Antidiabetic, antioxidant and cytotoxicity activities of ortho- and para-substituted Schiff bases derived from metformin hydrochloride: Validation by molecular docking and in silico ADME studies

Author:

Al-Qadsy Inas1,Saeed Waseem Sharaf2,Al-Odayni Abdel-Basit2,Alrabie Ali1,Al-Faqeeh Lena Ahmed Saleh3,Al-Adhreai Arwa1,Al-Owais Ahmad Abdulaziz4,Semlali Abdelhabib5,Farooqui Mazahar1

Affiliation:

1. Chemistry Department, Maulana Azad College of Arts, Science and Commerce , Aurangabad 431001 , India

2. Department of Restorative Dental Sciences, College of Dentistry, King Saud University , P.O. Box 60169 , Riyadh 11545 , Saudi Arabia

3. Microbiology Department, Dr. Babasaheb Ambedkar Marathwada University , Aurangabad 431004 , India

4. Chemistry Department, College of Science, King Saud University , P.O. Box 2455 , Riyadh 11451 , Saudi Arabia

5. Groupe de Recherche en Écologie Buccale, Faculté de Médecin Dentaire, Université Laval , Quebec , QC G1V 0A6 , Canada

Abstract

Abstract This work evaluates the in vitro antioxidant and antidiabetic activities of two metformin hydrochloride-based Schiff bases. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to examine the in vitro cytotoxic effects of HL1 and HL2 on the A549 lung cancer cell line. The two Schiff bases that have been previously synthesized by using two effective, green techniques, namely stirring and microwave-assisted, are N,N-dimethyl-N′-[(Z)-(2-nitrophenyl) methylidene] imidodicarbonimidic diamide and N,N-dimethyl-N′-[(Z)-(4-nitrophenyl) methylidene] imidodicarbonimidic diamide, indicated by HL1 and HL2, respectively. Studies of antidiabetic efficacy using alpha-amylase revealed that HL2 has a higher inhibition than HL1, but the results on sucrase enzyme showed that HL1 had the highest inhibitory action, whereas the outcome of the antioxidant test with the 2,2-diphenyl-1-picrylhydrazyl assay demonstrated that HL2 was the most effective antioxidant, followed by ascorbic acid and HL1. In the MTT assay, HL1 had the best result, with an IC50 value of 57.13 µg/mL compared to HL2 with an IC50 value of 76.83 µg/mL. It was observed that HL1 was the most effective against the human lung cancer cell line A459. The findings were supported by computational and pharmacokinetic studies (SwissADME). Based on empirical and computational studies, we suggest that HL1 and HL2 are promising candidates as antioxidants and antidiabetics after being examined in vivo.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3