3D-QSAR, molecular docking, ADMET, simulation dynamic, and retrosynthesis studies on new styrylquinolines derivatives against breast cancer

Author:

EL-Mernissi Reda1,Alaqarbeh Marwa2,Khaldan Ayoub1,Kara Mohammed3,Al kamaly Omkulthom4,Alnakhli Anwar M.4,Lakhlifi Tahar1,Sbai Abdelouahid1,Ajana Mohammed Aziz1,Bouachrine Mohammed1

Affiliation:

1. Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail , Meknes , Morocco

2. Basic Science Department, Prince Al Hussein bin Abdullah II Academy for Civil Protection, Al-Balqa Applied University , Al-Salt , 19117 , Jordan

3. Laboratory of Biotechnology, Conservation, and Valorization of Natural Resources (LBCVNR), Department of Biology, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University , Fez , 30000 , Morocco

4. Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh , 11671 , Saudi Arabia

Abstract

Abstract Breast cancer is the most common illness among women, accounting for 25% of all diagnoses, as stated by the American Cancer Society. Current research focuses on 43 compounds of styrylquinoline derivatives as potential inhibitors of tubulin to design a new drug that could potentially be effective against breast cancer cells in humans. The target compounds were subjected to a three-dimensional quantitative structure-activity relationship/comparative molecular similarity indices analysis (CoMSIA) approach, where CoMSIA models were used; the best results obtained are (Q 2 = 0.84, R 2 = 0.97, r ext 2 {r}_{\text{ext}}^{2} = 0.91), H-bond acceptor field was discovered to be important for increasing inhibitory activity by examining the contour maps (54%), and it plays a key role in the prediction of anticancer activity. Based on the contour maps of the CoMSIA models, we obtained information that allows us to propose four new molecules with higher cancer inhibitory than the 43 compounds found in the literature. The molecular docking was applied to determine the likely types of binding between the tubulin protein (PDB ID: 4O2B) and the proposed compounds, and the results show that M1 has a higher total score of 6.53 and two interactions with important conventional hydrogen bond type, followed by compound M2 with a total score of 5.74. Furthermore, the designed molecules showed better pharmacokinetic properties based on absorption, distribution, metabolism, excretion, and toxicity properties. Molecular dynamics simulations at 100 ns were conducted to confirm the binding stability of the selected ligands (M1 and M2) with tubulin protein. The simulation parameters used in the current study are root mean square deviation, root mean square fluctuation, H-bond, Rg, solvent accessible surface area, and binding energy. As a result, the designed compounds (ligands M1 and M2) have shown noteworthy potential as a drug candidate for experimental in vivo and in vitro testing due to their potential inhibition of breast cancer. Finally, the study of retrosynthesis in this work facilitates the synthesis of drug candidates.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3