Development of trace analysis for alkyl methanesulfonates in the delgocitinib drug substance using GC-FID and liquid–liquid extraction with ionic liquid

Author:

Nomura Shinkichi12,Ito Yoshiharu1,Takegami Shigehiko2,Kitade Tatsuya2

Affiliation:

1. Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan

2. Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan

Abstract

AbstractAlkyl methanesulfonates are genotoxic impurities that should be limited to an intake of not more than 1.5 µg/day, as regulated by the International Council for Harmonization guideline M7. We herein report a trace analysis of methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), and isopropyl methanesulfonate (IPMS) in the delgocitinib drug substance using liquid–liquid extraction, with an ionic liquid as the sample-solving medium, and direct injection gas chromatography detected with a flame-ionization detector. The proposed method takes advantage of the fine solubility of ionic liquids toward the drug substance, the good extraction efficiency of alkyl methanesulfonates in liquid–liquid extraction using the Chem Elut cartridge with low-polar organic solvents, and the ability of alkyl methanesulfonates to concentrate in minimum amounts of organic solvent, resulting in excellent sensitivity and selectivity. Specifically, for the preparation of the sample solution, a mixture of 1-butyl-3-methylimidazolium chloride, water, and acetonitrile was used as the sample-solving media, extracted with diethyl ether, and the eluent was concentrated to 1 mL. The method showed good linearity, accuracy, and precision from 1 to 5 ppm, and the limits of detection of MMS, EMS, and IPMS were 0.1, 0.05, and 0.05 ppm, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3