The Regularized Weak Functional Matching Pursuit for linear inverse problems

Author:

Kontak Max1ORCID,Michel Volker2ORCID

Affiliation:

1. Geomathematics Group , Department of Mathematics , University of Siegen , Walter-Flex-Str. 3, 57068 Siegen ; and High-Performance Computing, Simulation and Software Technology, DLR German Aerospace Center, Linder Höhe, 51147 Köln , Germany

2. Geomathematics Group , Department of Mathematics , University of Siegen , Walter-Flex-Str. 3, 57068 Siegen , Germany

Abstract

Abstract In this work, we present the so-called Regularized Weak Functional Matching Pursuit (RWFMP) algorithm, which is a weak greedy algorithm for linear ill-posed inverse problems. In comparison to the Regularized Functional Matching Pursuit (RFMP), on which it is based, the RWFMP possesses an improved theoretical analysis including the guaranteed existence of the iterates, the convergence of the algorithm for inverse problems in infinite-dimensional Hilbert spaces, and a convergence rate, which is also valid for the particular case of the RFMP. Another improvement is the cancellation of the previously required and difficult to verify semi-frame condition. Furthermore, we provide an a-priori parameter choice rule for the RWFMP, which yields a convergent regularization. Finally, we will give a numerical example, which shows that the “weak” approach is also beneficial from the computational point of view. By applying an improved search strategy in the algorithm, which is motivated by the weak approach, we can save up to 90  of computation time in comparison to the RFMP, whereas the accuracy of the solution does not change as much.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference28 articles.

1. T. Bonesky, Morozov’s discrepancy principle and Tikhonov-type functionals, Inverse Problems 25 (2009), no. 1, Article ID 015015.

2. R. A. DeVore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math. 5 (1996), no. 2–3, 173–187.

3. H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Math. Appl. 375, Kluwer Academic, Dordrecht, 1996.

4. D. Fischer, Sparse regularization of a joint inversion of gravitational data and normal mode anomalies, PhD thesis, Geomathematics Group, University of Siegen, 2011, http://dokumentix.ub.uni-siegen.de/opus/volltexte/2012/544/; Dr. Hut, Munich, 2011.

5. D. Fischer and V. Michel, Sparse regularization of inverse gravimetry—case study: Spatial and temporal mass variations in South America, Inverse Problems 28 (2012), no. 6, Article ID 065012.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3