Development of a machine learning-based signature utilizing inflammatory response genes for predicting prognosis and immune microenvironment in ovarian cancer

Author:

Dong Li1,Qian Ya-ping1,Li Shu-xiu1,Pan Hao2

Affiliation:

1. Department of Obstetrics and Gynaecology, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou , No. 7 People’s Hospital , Changzhou , China

2. Department of Cardiology, The Affiliated Changzhou , No. 2 People’s Hospital of Nanjing Medical University , Changzhou , China

Abstract

Abstract Ovarian cancer (OC) represents a significant health challenge, characterized by a particularly unfavorable prognosis for affected women. Accumulating evidence supports the notion that inflammation-related factors impacting the normal ovarian epithelium may contribute to the development of OC. However, the precise role of inflammatory response-related genes (IRRGs) in OC remains largely unknown. To address this gap, we performed an integration of mRNA expression profiles from 7 cohorts and conducted univariate Cox regression analysis to screen 26 IRRGs. By utilizing these IRRGs, we categorized patients into subtypes exhibiting diverse inflammatory responses, with subtype B displaying the most prominent immune infiltration. Notably, the elevated abundance of Treg cells within subtype B contributed to immune suppression, resulting in an unfavorable prognosis for these patients. Furthermore, we validated the distribution ratios of stromal cells, inflammatory cells, and tumor cells using whole-slide digitized histological slides. We also elucidated differences in the activation of biological pathways among subtypes. In addition, machine learning algorithms were employed to predict the likelihood of survival in OC patients based on the expression of prognostic IRRGs. Through rigorous testing of over 100 combinations, we identified CXCL10 as a crucial IRRG. Single-cell analysis and vitro experiments further confirmed the potential secretion of CXCL10 by macrophages and its involvement in lymphangiogenesis within the tumor microenvironment. Overall, the study provides new insights into the role of IRRGs in OC and may have important implications for the development of novel therapeutic approaches.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3