Metabolism related gene signature predicts prognosis and indicates tumor immune infiltration in ovarian cancer

Author:

Abstract

Energy metabolism plays a crucial role in supporting cancer cell growth and driving tumor progression. Our objective was to create a unique gene signature based on metabolic genes that could accurately predict the prognosis of patients with ovarian cancer (OC). We accessed microarray data of patients with OC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Patients from the TCGA dataset were divided into training and internal validation sets, maintaining a ratio of 3:1. Based on Least absolute shrinkage and selection operator Cox regression analysis, twenty-nine metabolism-related genes were identified for the development of the metabolic signature. Patients in the training set were successfully divided into low-and high-risk groups with a significantly different prognosis (Hazard Ratio (HR): 2.76, 95% Confidence Interval (CI): 2.12–3.59, p < 0.001). The prognostic value of this signature was confirmed in the internal (HR: 3.06, 95% CI: 1.80–5.17, p < 0.001) and external validation sets (HR: 2.17, 95% CI: 1.57–2.99, p < 0.001). The time-dependent receiver operating characteristic (ROC) at the 5-year interval demonstrated that the prognostic accuracy of this metabolic signature (Area under curve (AUC) = 0.723) was superior to that of any other clinicopathological features, including the Federation of Gynecology and Obstetrics stage (AUC = 0.509), grade (AUC = 0.536), and debulking status (AUC = 0.637). Further immune cell infiltration analysis showed that low-risk patients had a higher enrichment of immune-activating cells. In conclusion, a novel metabolic signature with good performance was established in this study. This prognostic model could aid in the identification of high-risk patients who require aggressive follow-up and therapeutic strategies.

Publisher

MRE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3