Experimental Study on EHD Flow Transition in a Small Scale Wire-plate ESP

Author:

Wang Chuan1,Xie Zhenqiang1,Xu Binggui2,Li Jun1,Zhou Xu1

Affiliation:

1. School of Mechanical and Electrical Engineering, Southwest Petroleum University, Xindu Avenue, No.8, 610500, Chengdu, China

2. Drilling Mechanical Department, CNPC Drilling Research Institute, Huanghe Street, No.5, 102206, Beijing, China

Abstract

Abstract The electrohydrodynamic (EHD) flow induced by the corona discharge was experimentally investigated in an electrostatic precipitator (ESP). The ESP was a narrow horizontal Plexiglas box (1300 mm×60 mm×60 mm). The electrode set consisted of a single wire discharge electrode and two collecting aluminum plate electrodes. Particle Image Velocimetry (PIV) method was used to visualize the EHD flow characteristics inside the ESP seeded with fine oil droplets. The influence of applied voltage (from 8 kV to 10 kV) and primary gas flow (0.15 m/s, 0.2 m/s, 0.4 m/s) on the EHD flow transition was elucidated through experimental analysis. The formation and transition of typical EHD flows from onset to the fully developed were described and explained. Experimental results showed that the EHD flow patterns change depends on the gas velocity and applied voltage. EHD flow starts with flow streamlines near collecting plates bending towards the wire electrode, forming two void regions. An oscillating jet forming the downstream appeared and moved towards the wire electrode as voltage increased. For higher velocities (≥0.2 m/s), the EHD transition became near wire phenomenon with a jet-like flow structure near the wire, forming a void region behind the wire and expanding as voltage increased. Fully developed EHD secondary flow in the form of counter-rotating vortices appeared upstream with high applied voltage.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3