Topic and sentiment analysis of responses to Muslim clerics’ misinformation correction about COVID-19 vaccine: Comparison of three machine learning models

Author:

Kabir Md Enamul1ORCID

Affiliation:

1. Bowling Green State University , Bowling Green, OH 43402 , USA

Abstract

Abstract Purpose The purpose of this research was to use develop a sentiment model using machine learning algorithms for discerning public response about the misinformation correction practices of Muslim clerics on YouTube. Method This study employed three machine learning algorithms, Naïve Bayes, SVM, and a Balanced Random Forest to build a sentiment model that can detect Muslim sentiment about Muslim clerics’ anti-misinformation campaign on YouTube. Overall, 9701 comments were collected. An LDA-based topic model was also employed to understand the most expressed topics in the YouTube comments. Results The confusion matrix and accuracy score assessment revealed that the balanced random forest-based model demonstrated the best performance. Overall, the sentiment analysis discovered that 74 percent of the comments were negative, and 26 percent were positive. An LDA-based topic model also revealed the eight most discussed topics associated with ten keywords in those YouTube comments. Practical implications The sentiment and topic model from this study will particularly help public health professionals and researchers to better understand the nature of vaccine misinformation and hesitancy in the Muslim communities. Social implications This study offers the joint task force of Muslim clerics and medical professionals, and the future misinformation campaigns a sentiment detection model to understand public attitude to such practices on social media. Originality While the impact of misinformation on public sentiment and opinion on social media has been researched extensively, Muslim perspectives on combating misinformation have received less attention. This research is the first to evaluate responses towards Muslim clerics correcting religious vaccine misinformation using machine learning models.

Publisher

Walter de Gruyter GmbH

Reference49 articles.

1. Abbas, Qamar, Fatima Mangrio & Sunil Kumar. 2021. Myths, beliefs, and conspiracies about COVID-19 vaccines in Sindh, Pakistan: An online cross-sectional survey. Authorea Preprints 1–7. https://doi.org/10.22541/au.161519250.03425961/v1.

2. Alimardani, Mahsa & Mona Elswah. 2020. Online temptations: COVID-19 and religious misinformation in the MENA region. Social Media + Society.

3. Arief, Nurlaela N & Siti Karlinah. 2019. The role of Ulama (Islamic religious leaders) in correcting anti-vaccination rhetoric in Indonesia. Journal of Asian Pacific Communication 32(2). 254–271.

4. Bavel, Jay, J. Van, Katherine Baicker, Paulo, S. Boggio, Valerio Capraro, Aleksandra Cichocka, Mina Cikara, Molly J. Crockett, Alia, J. Crum, Karen, M. Douglas, James, N., John Drury, Oeindrila Dube, Naomi Ellemers, Eli J. Finkel, James, H., Michele Gelfand, Shihui Han, S Alexander Haslam, Jolanda Jetten, Shinobu Kitayama, Dean Mobbs, Lucy, E., Dominic, J., Gordon Pennycook, Ellen Peters, Richard, E., David, G., Stephen, D., Simone Schnall, Azim Shariff, Linda, J., Sandra Susan Smith, Cass, R., Nassim Tabri, Joshua, A., Sander van der Linden, Paul van Lange, Kim, A., Michael, J. A., Jamil Zaki, Sean, R. & Robb, Willer. 2020. Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour 4(5). 460–471. PMID:32355299.

5. Chan, Man-pui Sally, Christopher R Jones, Kathleen Hall Jamieson & Dolores Albarracín, 2017. Debunking: A meta-analysis of the psychological efficacy of messages correcting misinformation. Psychological Science 28(11). 1531–1546.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Mobile Users Differ from Non-Mobile Users in #IndiaFightsCorona on Twitter;Mobile Communication in Asian Society and Culture;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3