Magnesium-rich intermetallic compounds RE
3Ag4Mg12 (RE = Y, La–Nd, Sm–Dy, Yb) and AE
3Ag4Mg12 (AE = Ca, Sr)
Author:
Reimann Maximilian Kai1, Klenner Steffen1, Gerdes Josef Maximilian2, Hansen Michael Ryan2, Pöttgen Rainer1
Affiliation:
1. Institut für Anorganische und Analytische Chemie , Universität Münster , Corrensstrasse 30 , 48149 Münster , Germany 2. Institut für Physikalische Chemie , Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany
Abstract
Abstract
The magnesium-rich intermetallic compounds RE
3Ag4Mg12 (RE = Y, La–Nd, Sm–Dy, Yb) and AE
3Ag4Mg12 (AE = Ca, Sr) were synthesized from the elements in sealed tantalum ampoules through heat treatment in an induction furnace. X-ray powder diffraction studies confirm the hexagonal Gd3Ru4Al12 type structure, space group P63/mmc. Three structures were refined from single crystal X-ray diffractometer data: a = 973.47(5), c = 1037.19(5) pm, wR2 = 0.0296, 660 F
2 values, 30 variables for Gd3Ag3.82(1)Mg12.18(1), a = 985.27(9), c = 1047.34(9) pm, wR2 = 0.0367, 716 F
2 values, 29 variables for Yb3Ag3.73(1)Mg12.27(1) and a = 992.41(8), c = 1050.41(8) pm, wR2 = 0.0373, 347 F
2 values, 28 variables for Ca3Ag3.63(1)Mg12.37(1). Refinements of the occupancy parameters revealed substantial Ag/Mg mixing within the silver-magnesium substructure, a consequence of the Ag@Mg8 coordination. The alkaline earth and rare earth atoms build Kagome networks. Temperature dependent magnetic susceptibility measurements indicate diamagnetism/Pauli paramagnetism for the compounds with Ca, Sr, Y and YbII, while the others with the trivalent rare earth elements are Curie-Weiss paramagnets. Most compounds order antiferromagnetically at T
N
= 4.4(1) K (RE = Pr), 34.6(1) K (RE = Gd) and 23.5(1) K (RE = Tb) while Eu3Ag4Mg12 is a ferromagnet (T
C
= 19.1(1) K). 151Eu Mössbauer spectra confirm divalent europium (δ = −9.88(1) mm s−1). Full magnetic hyperfine field splitting (18.4(1) T) is observed at 6 K. Yb3Ag4Mg12 shows a single resonance in its 171Yb solid state NMR spectrum at 6991 ppm at 300 K indicating a strong, positive Knight shift.
Publisher
Walter de Gruyter GmbH
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science
Reference47 articles.
1. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720; https://doi.org/10.1016/j.jssc.2007.03.007. 2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2021/22); ASM International®: Materials Park, Ohio (USA), 2021. 3. Kersting, M., Niehaus, O., Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Kristallogr. 2014, 229, 285; https://doi.org/10.1515/zkri-2013-1717. 4. Ourane, B., Gaudin, E., Zouari, R., Couillaud, S., Bobet, J.-L. Inorg. Chem. 2013, 52, 13289; https://doi.org/10.1021/ic401911g. 5. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Solid State Sci. 2009, 11, 801; https://doi.org/10.1016/j.solidstatesciences.2008.12.006.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|