Structural, Optoelectronic and Thermoelectric Properties of Ternary CaBe2X2 (X = N, P, As, Sb, Bi) Compounds

Author:

Khan Abdul Ahad1,Rehman Aziz Ur2,Laref A.3,Yousaf Masood4,Murtaza G.5

Affiliation:

1. Department of Physics , University of the Peshawar , KP , Pakistan

2. Department of Physics , Allama Iqbal Open University, H-8 , Islamabad , Pakistan

3. Department of Physics and Astronomy , College of Science, King Saud University , Riyadh , 11451 King Saudi Arabia

4. Department of Physics , Division of Science and Technology, University of Education , Township, Lahore, 54770 , Pakistan

5. Department of Physics , Materials Modelling Lab, Islamia College Peshawar , KP , Pakistan , Tel.: +92 3216582416

Abstract

Abstract The structural, electronic, optical and thermoelectric properties of ternary CaBe2X2 (X = N, P, As, Sb and Bi) have been investigated comprehensively for the first time using density functional theory. All the compounds are optimized to obtain their ground states. Computed structural parameters agree to the available experimental results. Electronic band structure calculations reveal the semiconducting nature of the compounds, while bang gap decreases by changing the anion X from N to Bi the band gap decreases. In the valence band, major contribution is due to X-p state, while in conduction band (CB) the major contribution is mainly due to the Ca-d state. Furthermore, electron charge density plots reveal ionic bonding character with small covalent bonding. Optical properties are calculated in detail. Static value of refractive index shows inverse variation with band gap. The refractive indices of these compounds are high in the infrared region and gradually decreased in the visible and ultraviolet region. The thermoelectric properties are studied using Boltzmann statistics through BoltzTraP code. High optical conductivity peaks and figure of merits (ZT) for compounds reveal that they are good candidates for the optoelectronics and thermo-electric devices.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3