First integrals and exact solutions of some compartmental disease models

Author:

Haq Burhan Ul1,Naeem Imran2ORCID

Affiliation:

1. Department of Mathematics , School of Science and Engineering, Lahore University of Management Sciences , Lahore Cantt 54792 , Pakistan

2. Department of Mathematics , School of Science and Engineering, Lahore University of Management Sciences , Lahore Cantt 54792 , Pakistan , Email:

Abstract

Abstract The notions of artificial Hamiltonian (partial Hamiltonian) and partial Hamiltonian operators are used to derive the first integrals for the first order systems of ordinary differential equations (ODEs) in epidemiology, which need not be derived from standard Hamiltonian approaches. We show that every system of first order ODEs can be cast into artificial Hamiltonian system q ˙ = H p $\dot{q}=\frac{{\partial H}}{{\partial p}}$ , p ˙ = H q + Γ ( t , q , p ) $\dot{p}=-\frac{{\partial H}}{{\partial q}}+\Gamma(t,\;q,\;p)$ (see [1]). Moreover, the second order equations and the system of second order ODEs can be written in the form of artificial Hamiltonian system. Then, the partial Hamiltonian approach is employed to derive the first integrals for systems under consideration. These first integrals are then utilized to find the exact solutions of models from the epidemiology for a distinct class of population. For physical insights, the solution curves of the closed-form expressions obtained are interpreted in order for readers understand the disease dynamics in a much deeper way. The effects of various pertinent parameters on the prognosis of the disease are observed and discussed briefly.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Reference30 articles.

1. R. Naz and I. Naeem, Z. Naturforsch. A 73, 323 (2018).

2. V. Dorodnitsyn and R. Kozlov, J. Eng. Math. 66, 253 (2010).

3. E. Noether, Nachr. König. Gesell. Wissen. Göttingen, Math.-Phys. Kl. Heft 2, 235 (1918). [English translation in transport theory and statistical physics 1, 186 (1971)].

4. A. H. Kara, F. M. Mahomed, I. Naeem, and C. Wafo Soh, Math. Meth. Appl. Sci. 30, 2079 (2007).

5. A. H. Kara and F. M. Mahomed, Nonlin. Dyn. 45, 367 (2006).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closed-form solutions for a reaction-diffusion SIR model with different diffusion coefficients;Discrete and Continuous Dynamical Systems - S;2024

2. Integrability properties and invariant solutions of some biological models;Mathematical Methods in the Applied Sciences;2023-01-23

3. On exact integrability of a Covid‐19 model: SIRV;Mathematical Methods in the Applied Sciences;2022-11-22

4. The first integrals and closed‐form solutions of a Susceptible‐Exposed‐Infectious epidemic model;Mathematical Methods in the Applied Sciences;2022-09-30

5. Group classification and analytical solutions of a radially symmetric avascular cancer model;Studies in Applied Mathematics;2021-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3