The Artificial Hamiltonian, First Integrals, and Closed-Form Solutions of Dynamical Systems for Epidemics

Author:

Naz Rehana1,Naeem Imran2ORCID

Affiliation:

1. Centre for Mathematics and Statistical Sciences , Lahore School of Economics , Lahore 53200 , Pakistan

2. Department of Mathematics , School of Science and Engineering, Lahore University of Management Sciences (LUMS) , Lahore Cantt 54792 , Pakistan

Abstract

Abstract The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form q ˙ i = H p i , p ˙ i = H q i + Γ i ( t , q i , p i ) ${\dot q^i} = \frac{{\partial H}}{{\partial {p_i}}},{\text{ }}{\dot p^i} = - \frac{{\partial H}}{{\partial {q_i}}} + {\Gamma ^i}(t,{\text{ }}{q^i},{\text{ }}{p_i})$ appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term ‘artificial Hamiltonian’ for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3