Waterborne poly(urethane-urea)s films as a sustained release system for ketoconazole

Author:

Vieira Italo Rennan Sousa1,Miranda Gisele dos Santos2,Ricci-Júnior Eduardo3,Delpech Marcia Cerqueira4

Affiliation:

1. Instituto de Química, Universidade do Estado do Rio de Janeiro (IQ/UERJ), Rua São Francisco Xavier, 524, Maracanã, 20550-900, Rio de Janeiro, RJ, Brazil

2. Colégio Universitário Geraldo Reis, Universidade Federal Fluminense (COLUNI/UFF), Rua Alexandre Moura, 8, São Domingos, 24210-200, Niterói, RJ, Brazil

3. Associate Professor, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (FF/UFRJ). Avenida Carlos Chagas Filho s/n CCS, Farmácia Universitária, Ilha do Fundão, Zip code: 21941-590, Rio de Janeiro, RJ, Brazil

4. Departamento de Processos Químicos, Instituto de Química, Universidade do Estado do Rio de Janeiro (DPQ/IQ/UERJ), Rua São Francisco Xavier, 524, Maracanã, 20550-900, Rio de Janeiro, RJ, Brazil

Abstract

AbstractKetoconazole (KTZ) was incorporated in waterborne poly(urethane-urea)s dispersions (WPUU), aiming at the production of films for drug sustained release. Dispersions based on poly(ethylene glycol-block-propylene glycol) (PEG-b-PPG) (four monomers with different contents of PEG hydrophilic segments), poly(propylene glycol), isophorone diisocyanate, dime-thylolpropionic acid and hydrazine were produced and characterized by apparent viscosity and average particle size (APS). Cast films-drug interaction was investigated by Fourier-Transform infrared spectrometry (FTIR). In vitro dissolution assays were performed in simulated gastrointestinal juices, followed by application of kinetic models. Stable pseudoplastic dispersions, with APS between 27 to 320 nm were obtained. FTIR from KTZ-loaded films indicated interactions between polymer and drug. In vitro release of KTZ was achieved above 80%, notably influenced by PEG-based segments content up to 2 h, followed by sustained release for 8 h. Higuchi’s and first-order equations described the drug kinetic profile, as diffusion of the drug and erosion of the swollen polymer, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Reference112 articles.

1. Solubilization and release of a model drug nimesulide from PEO–PPO–PEO block copolymer core–shell micelles: effect of size of PEO blocks;J Solution Chemistry,2013

2. PEO–PPO based star-block copolymer T904 as pH responsive nanocarriers for quercetin: Solubilization and release study;Eur Polym J,2013

3. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes;Inter J Pharm,2018

4. Aqueous dispersions based on nanocomposites of polyurethanes and hydrophilic brazilian clays: synthesis and characterization;Polímeros,2011

5. Preclinical study of ketoconazole ororetentive medicated jelly;Br J Res,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3