Synthesis and Study of Properties of Waterborne Polyurethanes Based on β-Cyclodextrin Partial Nitrate as Potential Systems for Delivery of Bioactive Compounds

Author:

Karpov Sergei V.ORCID,Dzhalmukhanova Aigul S.,Kurbatov Vladimir G.ORCID,Perepelitsina Eugenia O.,Tarasov Alexander E.ORCID,Badamshina Elmira R.

Abstract

Eco-friendly waterborne polyurethanes (WPU) find wide application in agriculture as pesticide carriers, which enhances their efficiency. To provide better control of the retention time and capacity of pesticides, WPU can be modified by cyclodextrin derivatives able to form supramolecular assemblies with bioactive substances. Synthesis of WPU containing up to 15 wt.% of covalently bound β-cyclodextrin partial nitrate (CDPN) is reported in this work. Covalent bonding of CDPN to a polyurethane matrix has been proved by IR spectroscopy and size exclusion chromatography. The particle size and viscosity of the WPU dispersion have been determined. The introduction of CDPN affects molecular weight and thermal properties of WPU films. The presence of CDPN in WPU is shown to provide higher average molecular weight, wider molecular weight distribution, and larger average size of dispersed particles, compared with WPU reference samples containing 1,4-butanediol. The analysis of the rheological behavior of the obtained WPU dispersions shows that they can be classified as pseudoplastic liquids. The analysis of the thermal parameters of WPU films indicates that the introduction of 15.0 wt.% CDPN shifts the value of the glass transition temperature from −63 °C to −48 °C compared with reference samples. We believe that the results of the present study are sufficiently encouraging in terms of using CDPN-modified eco-friendly WPU as potential systems for developing the delivering agents of bioactive compounds. The application of such systems will allow the long-term contact of pesticides with the plant surface and minimize the possibility of their release into the environment.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3