Lipid nanodiscs of poly(styrene-alt-maleic acid) to enhance plant antioxidant extraction

Author:

Punyamoonwongsa Patchara1

Affiliation:

1. School of Science, Mae Fah Luang University, Ta-sud, Muang , Chiang Rai 57100 , Thailand

Abstract

Abstract Plant antioxidants can be applied in the management of various human diseases. Despite these, extraction of these compounds still suffers from residual solvent impurities, low recovery yields, and the risks of undesirable chemical changes. Inspired by the protein–lipid interactions in the cell membranes, we proposed using poly(styrene-alt-maleic acid) (PSMA) to destabilize and associate with the bilayer lipids into the membrane-like nanodiscs. Such nanostructures could serve as protective reservoirs for the active compounds to reside with preserved bioactivities. This concept was demonstrated in the antioxidant extraction from robusta coffee leaves. Results indicated that aqueous PSMA extraction (no buffer agent) yielded products with the highest contents of phenolic acids (11.6 mg GAE·g−1) and flavonoids (9.6 mg CE·g−1). They also showed the highest antioxidant activity (IC50 = 3.7 µg·mL−1) compared to those obtained by typical sodium dodecyl sulfate and water extraction. This biomimetic approach could be considered for developing environmentally friendly extraction protocols in the future.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3