Sharp Singular Trudinger–Moser Inequalities in Lorentz–Sobolev Spaces

Author:

Lu Guozhen1,Tang Hanli2

Affiliation:

1. Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

2. School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, P. R. China

Abstract

Abstract In this paper, we first establish a singular ( 0 < β < n ${(0<\beta<n}$ ) Trudinger–Moser inequality on any bounded domain in n ${\mathbb{R}^{n}}$ with Lorentz–Sobolev norms (Theorem 1.1). Next, we prove the critical singular ( 0 < β < n ${(0<\beta<n}$ ) Trudinger–Moser inequality on any unbounded domain in n ${\mathbb{R}^{n}}$ with Lorentz–Sobolev norms (Theorem 1.2). Then, we set up a subcritical singular ( 0 < β < n ${(0<\beta<n}$ ) Trudinger–Moser inequality on any unbounded domain in n ${\mathbb{R}^{n}}$ with Lorentz–Sobolev norms (Theorem 1.3). Finally, we establish the subcritical nonsingular ( β = 0 ${(\beta=0}$ ) Trudinger–Moser inequality on any unbounded domain in n ${\mathbb{R}^{n}}$ with Lorentz–Sobolev norms (Theorem 1.5). The constants in all these inequalities are sharp. In [9], for the proof of Theorem 1.2 in the nonsingular case β = 0 ${\beta=0}$ , the following inequality was used (see [17]): u ( r ) - u ( r 0 ) 1 n w n 1 / n r r 0 U ( s ) s 1 / n d s s , $u^{\ast}(r)-u^{\ast}(r_{0})\leq\frac{1}{nw_{n}^{{1/n}}}\int_{r}^{r_{0}}U(s)s^{% {1/n}}\frac{ds}{s},$ where U ( x ) ${U(x)}$ is the radial function built from | u | ${|\nabla u|}$ on the level set of u, i.e., | u | > t | u | d x = 0 | { | u | > t } | U ( s ) d s . $\int_{|u|>t}\lvert\nabla u|\,dx=\int_{0}^{|\{|u|>t\}|}U(s)\,ds.$ The construction of such U uses the deep Fleming–Rishel co-area formula and the isoperimetric inequality and is highly nontrivial. Moreover, this argument will not work in the singular case 0 < β < n ${0<\beta<n}$ . One of the main novelties of this paper is that we can avoid the use of this deep construction of such a radial function U (see remarks at the end of the introduction). Moreover, our approach adapts the symmetrization-free argument developed in [19, 21, 23], where we derive the global inequalities on unbounded domains from the local inequalities on bounded domains using the level sets of the functions under consideration.

Funder

National Science Foundation

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3