Affiliation:
1. School of Sciences, Liaoning Shihua University, 113001 Fushun; and Department of Mathematical Sciences, Tsinghua University, 100084 Beijing, P. R. China
Abstract
Abstract
The present paper studies the nonlinear elliptic equation
{
Δ
u
+
λ
|
x
|
s
u
p
-
1
+
∑
i
=
1
l
λ
i
|
x
|
s
i
u
2
∗
(
s
i
)
-
1
+
u
2
∗
-
1
=
0
in
Ω
,
u
>
0
in
Ω
,
u
=
0
on
∂
Ω
,
$\left\{\begin{aligned} \displaystyle\Delta u+\frac{\lambda}{|x|^{s}}u^{p-1}+%
\sum_{i=1}^{l}\frac{\lambda_{i}}{|x|^{s_{i}}}u^{2^{\ast}(s_{i})-1}+u^{2^{\ast}%
-1}&\displaystyle=0&&\displaystyle\text{in }\Omega,\\
\displaystyle u&\displaystyle>0&&\displaystyle\text{in }\Omega,\\
\displaystyle u&\displaystyle=0&&\displaystyle\text{on }\partial\Omega,\end{%
aligned}\right.$
which involves multiple Hardy–Sobolev critical exponents, where
λ
≠
0
${\lambda\neq 0}$
,
s
∈
[
0
,
2
)
${s\in[0,2)}$
,
p
∈
(
2
,
2
∗
(
s
)
)
${p\in(2,2^{\ast}(s))}$
,
0
<
s
1
<
⋯
<
s
l
<
2
$0<s_{1}<\cdots<s_{l}<2$
,
λ
1
,
…
,
λ
k
>
0
${\lambda_{1},\dots,\lambda_{k}>0}$
,
λ
k
+
1
,
…
,
λ
l
<
0
${\lambda_{k+1},\dots,\lambda_{l}<0}$
for some
k
∈
[
1
,
l
]
${k\in[1,l]}$
and Ω is a
C
1
$C^{1}$
open bounded domain in
ℝ
N
$\mathbb{R}^{N}$
,
N
≥
3
${N\geq 3}$
, containing the origin. The existence of a positive ground state solution is established when
λ
>
0
${\lambda>0}$
and
p
≥
2
∗
(
s
k
)
${p\geq 2^{\ast}(s_{k})}$
.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献