Affiliation:
1. School of Mathematics and Statistics, Jiangxi Normal University , Nanchang , Jiangxi 330022 , P. R. China
Abstract
Abstract
In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation:
(0.1)
−
Δ
u
+
λ
V
(
x
)
u
=
μ
∣
u
∣
p
−
2
u
+
∑
i
=
1
k
(
∣
x
∣
−
(
N
−
α
i
)
∗
∣
u
∣
2
i
∗
)
∣
u
∣
2
i
∗
−
2
u
in
R
N
,
u
∈
H
1
(
R
N
)
,
\left\{\begin{array}{l}-\Delta u+\lambda V\left(x)u=\mu | u{| }^{p-2}u+\mathop{\displaystyle \sum }\limits_{i=1}^{k}\left(| x{| }^{-\left(N-{\alpha }_{i})}\ast | u{| }^{{2}_{i}^{\ast }})| u{| }^{{2}_{i}^{\ast }-2}u\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\hspace{1.0em}\\ u\hspace{0.33em}\in {H}^{1}\left({{\mathbb{R}}}^{N}),\hspace{1.0em}\end{array}\right.
where
λ
,
μ
∈
R
+
,
N
≥
4
\lambda ,\mu \in {{\mathbb{R}}}^{+},N\ge 4
, and
2
i
∗
=
N
+
α
i
N
−
2
{2}_{i}^{\ast }=\frac{N+{\alpha }_{i}}{N-2}
with
N
−
4
<
α
i
<
N
N-4\lt {\alpha }_{i}\lt N
,
i
=
1
,
2
,
…
,
k
i=1,2,\ldots ,k
are critical exponents and
2
<
p
<
2
min
∗
=
min
{
2
i
∗
:
i
=
1
,
2
,
…
,
k
}
2\lt p\lt {2}_{\min }^{\ast }={\rm{\min }}\left\{{2}_{i}^{\ast }:i=1,2,\ldots ,k\right\}
. Suppose that
Ω
=
int
V
−
1
(
0
)
⊂
R
N
\Omega ={\rm{int}}\hspace{0.33em}{V}^{-1}\left(0)\subset {{\mathbb{R}}}^{N}
is a bounded domain, we show that for
λ
\lambda
large, problem (0.1) possesses at least
cat
Ω
(
Ω
)
{{\rm{cat}}}_{\Omega }\left(\Omega )
positive solutions.
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献