Affiliation:
1. Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, 34090Montpellier, France
Abstract
AbstractIn this work, we introduce and analyze anhp-hybrid high-order (hp-HHO) method for a variable diffusion problem. The proposed method is valid in arbitrary space dimension and for fairly general polytopal meshes. Variable approximation degrees are also supported. We provehp-convergence estimates for both the energy- andL^{2}-norms of the error, which are the first of this kind for Hybrid High-Order methods. These results hinge on a novelhp-approximation lemma valid for general polytopal elements in arbitrary space dimension. The estimates are additionally fully robust with respect to the heterogeneity of the diffusion coefficient, and show only a mild dependence on the square root of the local anisotropy, improving previous results for HHO methods. The expected exponential convergence behavior is numerically demonstrated on a variety of meshes for both isotropic and strongly anisotropic diffusion problems.
Funder
Agence Nationale de la Recherche
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献