Rayleigh Quotient Methods for Estimating Common Roots of Noisy Univariate Polynomials

Author:

Stegeman Alwin1,De Lathauwer Lieven1ORCID

Affiliation:

1. Group Science, Engineering and Technology , KU Leuven – Kulak, E. Sabbelaan 53, 8500 Kortrijk ; and Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven , Belgium

Abstract

Abstract The problem is considered of approximately solving a system of univariate polynomials with one or more common roots and its coefficients corrupted by noise. The goal is to estimate the underlying common roots from the noisy system. Symbolic algebra methods are not suitable for this. New Rayleigh quotient methods are proposed and evaluated for estimating the common roots. Using tensor algebra, reasonable starting values for the Rayleigh quotient methods can be computed. The new methods are compared to Gauss–Newton, solving an eigenvalue problem obtained from the generalized Sylvester matrix, and finding a cluster among the roots of all polynomials. In a simulation study it is shown that Gauss–Newton and a new Rayleigh quotient method perform best, where the latter is more accurate when other roots than the true common roots are close together.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference34 articles.

1. S. Barnett, Polynomials and Linear Control Systems, Monogr. Textb. Pure Appl. Math. 77, Marcel Dekker, New York, 1983.

2. K. Batselier, P. Dreesen and B. De Moor, On the null spaces of the Macaulay matrix, Linear Algebra Appl. 460 (2014), 259–289.

3. G. Boutry, M. Elad, G. H. Golub and P. Milanfar, The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach, SIAM J. Matrix Anal. Appl. 27 (2005), no. 2, 582–601.

4. D. A. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, 2nd ed., Grad. Texts in Math. 185, Springer, New York, 2005.

5. S. Das and A. Neumaier, Solving overdetermined eigenvalue problems, SIAM J. Sci. Comput. 35 (2013), no. 2, A541–A560.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tensor Numerical Methods: Actual Theory and Recent Applications;Computational Methods in Applied Mathematics;2018-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3