1. P. Benner, A. Onwunta and M. Stoll,
An low-rank inexact Newton–Krylov method for stochastic eigenvalue problems,
Comput. Methods Appl. Math. 19 (2019), no. 1, 5–22.
2. S. Dolgov,
A tensor decomposition algorithm for large ODEs with conservation laws,
Comput. Methods Appl. Math. 19 (2019), no. 1, 23–38.
3. M. Eigel, J. Neumann, R. Schneider and S. Wolf,
Non-intrusive tensor reconstruction for high dimensional random PDEs,
Comput. Methods Appl. Math. 19 (2019), no. 1, 39–53.
4. I. Gavrilyuk,
Super exponentially convergent approximation to the solution of the Schrödinger equation in abstract setting,
Comput. Methods Appl. Math. 10 (2010), no. 4, 345–358.
5. I. Gavrilyuk, W. Hackbusch and B. Khoromskij,
Data-sparse approximation to the operator-valued functions of elliptic operators,
Math. Comp. 73 (2004), 1297–1324.