Author:
Dwivedi Apoorva,Khanna Gargi
Abstract
Abstract
The present work attempts to enhance the sensitivity of a folded beam microelectromechanical systems (MEMS) capacitive accelerometer by optimising the device geometry. The accelerometer is intended to serve as a microphone in the fully implantable hearing application which can be surgically implanted in the middle ear bone structure. For the efficient design of the accelerometer as a fully implantable biomedical device, the design parameters such as size, weight and resonant frequency have been considered. The geometrical parameters are varied to obtain the optimum sensitivity considering the design constraints and the stability of the structure. The optimised design is simulated and verified using COMSOL MULTIPHYSICS 4.2. The stability of the device is ensured using eigenfrequency analysis. Optimised results of the device geometry are presented and discussed. The accelerometer has a sensing area of 1 mm2 and attains a nominal capacitance of 5.3 pF and an optimum sensitivity of 6.89 fF.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献