Using superimposed multidimensional schemas and OLAP patterns for RDF data analysis

Author:

Hilal Median,Schuetz Christoph G.,Schrefl Michael

Abstract

Abstract The foundations for traditional data analysis are Online Analytical Processing (OLAP) systems that operate on multidimensional (MD) data. The Resource Description Framework (RDF) serves as the foundation for the publication of a growing amount of semantic web data still largely untapped by companies for data analysis. Most RDF data sources, however, do not correspond to the MD modeling paradigm and, as a consequence, elude traditional OLAP. The complexity of RDF data in terms of structure, semantics, and query languages renders RDF data analysis challenging for a typical analyst not familiar with the underlying data model or the SPARQL query language. Hence, conducting RDF data analysis is not a straightforward task. We propose an approach for the definition of superimposed MD schemas over arbitrary RDF datasets and show how to represent the superimposed MD schemas using well-known semantic web technologies. On top of that, we introduce OLAP patterns for RDF data analysis, which are recurring, domain-independent elements of data analysis. Analysts may compose queries by instantiating a pattern using only the MD concepts and business terms. Upon pattern instantiation, the corresponding SPARQL query over the source data can be automatically generated, sparing analysts from technical details and fostering self-service capabilities.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference25 articles.

1. Query Recommendation https www org sparql query;SPARQL;Language,2013

2. Vocabulary for OLAP cubes on the semantic web In Proceedings of COLD org;Etcheverry,2012

3. Self service;Alpar;business intelligence Business Information Systems Engineering,2016

4. Linked Data - the story so far on and jswis;Bizer;International Journal Semantic Web Information Systems,2009

5. Pervasive intelligence Techniques and technologies to deploy BI on an enterprise scale Best Practices Report;Eckerson;business,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3