Knowledge Graph OLAP

Author:

Schuetz Christoph G.1,Bozzato Loris2,Neumayr Bernd1,Schrefl Michael1,Serafini Luciano2

Affiliation:

1. Institute of Business Informatics – Data & Knowledge Engineering, Johannes Kepler University Linz, Austria. E-mails: christoph.schuetz@jku.at, bernd.neumayr@jku.at, michael.schrefl@jku.at

2. Center for Information and Communication Technology, Fondazione Bruno Kessler, Italy. E-mails: bozzato@fbk.eu, serafini@fbk.eu

Abstract

A knowledge graph (KG) represents real-world entities and their relationships. The represented knowledge is often context-dependent, leading to the construction of contextualized KGs. The multidimensional and hierarchical nature of context invites comparison with the OLAP cube model from multidimensional data analysis. Traditional systems for online analytical processing (OLAP) employ multidimensional models to represent numeric values for further analysis using dedicated query operations. In this paper, along with an adaptation of the OLAP cube model for KGs, we introduce an adaptation of the traditional OLAP query operations for the purposes of performing analysis over KGs. In particular, we decompose the roll-up operation from traditional OLAP into a merge and an abstraction operation. The merge operation corresponds to the selection of knowledge from different contexts whereas abstraction replaces entities with more general entities. The result of such a query is a more abstract, high-level view – a management summary – of the knowledge.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference73 articles.

1. Fusion cubes: Towards self-service business intelligence;Abelló;International Journal of Data Warehousing and Mining,2013

2. Using semantic web technologies for exploratory OLAP: A survey;Abello;IEEE Transactions on Knowledge and Data Engineering,2015

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. Patel-Schneider (eds), The Description Logic Handbook, Cambridge University Press, 2003.

4. Swift Logic for Big Data and Knowledge Graphs

5. Scalable graph-based OLAP analytics over process execution data;Benatallah;Distributed and Parallel Databases,2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Knowledge Graph Completion Based Upon Knowledge Graph Embedding;2024 9th International Conference on Computer and Communication Systems (ICCCS);2024-04-19

2. A Distributed and Parallel Processing Framework for Knowledge Graph OLAP;Lecture Notes in Computer Science;2023

3. Knowledge Hypergraph-Based Multidimensional Analysis for Natural Language Queries: Application to Medical Data;Computational Science – ICCS 2023;2023

4. Multidimensional modeling driven from a domain language;Automated Software Engineering;2022-12-26

5. Advances on Data Management and Information Systems;Information Systems Frontiers;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3