Loads Acting on the Mine Conveyance Attachments and Tail Ropes during the Emergency Braking in the Event of an Overtravel

Author:

Wolny Stanisław

Abstract

Abstract It has now become the common practice among the design engineers that in dimensioning of structural components of conveyances, particularly the load bearing elements, they mostly use methods that do not enable the predictions of their service life, instead they rely on determining the safety factor related to the static loads exclusively. In order to solve the problem, i.e. to derive and verify the key relationships needed to determine the fatigue endurance of structural elements of conveyances expressed in the function of time and taking into account the type of hoisting gear, it is required that the values of all loads acting upon the conveyance should be determined, including those experienced under the emergency conditions, for instance during the braking phase in the event of overtravel. This study relies on the results of dynamic analysis of a hoisting installation during the braking phase when the conveyance approaches the topmost or lowermost levels. For the assumed model of the system, the equations of motion are derived for the hoisting and tail rope elements and for the elastic strings. The section of the hoisting rope between the full conveyance approaching the top station and the Keope pulley is substituted by a spring with the constant elasticity coefficient, equal to that of the rope section at the instant the conveyance begins the underwind travel. Recalling the solution to the wave equation, analytical formulas are provided expressing the displacements of any cross-profiles of hoisting and tail ropes, including the conveyance attachments and tail ropes, in the function of braking forces applied to conveyances in the overtravel path and operational parameters of the hoisting gear. Besides, approximate formulas are provided yielding: loading of the hoisting rope segment between the conveyance braking in the headgear tower and the Keope pulley deceleration of the conveyance during the braking phase. The results will be utilised to derive the function governing the conveyance load variations during the emergency braking, depending on the parameters of the hoisting installations and the braking systems. These relationships are required for adequate design of the frictional contact between the ropes and the pulley and will become the basic criteria for dimensioning and design of load-bearing components of conveyances in the context of improving their reliability and safety features.

Publisher

Walter de Gruyter GmbH

Reference2 articles.

1. Theoretical and experimental analysis of loads in mining tub suspensions in the condition of operational braking of a mine hoist facility No;Wolny;Arch Min Sci,2001

2. Dynamic loading of conveyances in normal operating conditions No;Wolny;Arch Min Sci,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive fuzzy command–filtered control strategy for electro-hydraulic braking systems of winding hoist with prescribed performance;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-10-06

2. Thermal Analysis of the Industrial Shoe Brakes to Reduce the Risk of Failure During Braking;Archives of Mining Sciences;2023-07-24

3. Co-simulation model coupling of flexible rope hoisting system and hydraulic braking system for a mine hoist;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2021-11-15

4. A methodology for calculating limit deceleration of flexible hoisting system: A case study of mine hoist;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2020-05-19

5. Health Monitoring for Balancing Tail Ropes of a Hoisting System Using a Convolutional Neural Network;Applied Sciences;2018-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3