Co-simulation model coupling of flexible rope hoisting system and hydraulic braking system for a mine hoist

Author:

Ziyu Song1,Xiaona Wang12,Yajing Li1,Yu Guo1,Huimin Hao1,Jiahai Huang1ORCID

Affiliation:

1. Mechanical and Electrical Engineering Research Institute, College of Mechanical and Vehicle Engineering of Taiyuan University of Technology, China

2. Beijing Research Institute of Automation for Machinery Industry Co., Ltd, China

Abstract

The hoist is an important equipment in the mine pit. Since the containers are lifted or lowered with flexible steel wire ropes, there are shocks and vibrations during operation, especially in the emergency braking stage, the shocks and vibration will be more severe. Mine hoist is a complex system; therefore, it is difficult to obtain all its dynamics information only by investigating the flexible hoisting subsystem or hydraulic brake subsystem. Therefore, it is very necessary to establish an accurate model to predict these characteristics of the hoist, this will provide useful tools for hoist design and maintenance. Therefore, a joint modeling methodology is proposed and implemented in this paper. A hoisting system model considering the non-linear factors such as contact characteristics and flexibility was established in RecurDyn. The hydraulic braking system model and control system model were established in AMESim, and the co-simulation model was constructed by the interface module. In this co-simulation model, not only the flexible hoisting subsystem and hydraulic brake subsystem are included, but also the coupling effect of subsystems is considered. Finally, taking the lifting condition as an example, execute emergency braking research on the hoisting system under experiment, mathematical model, and co-simulation model, respectively. Comparing the co-simulation model with the mathematical dynamics model, and the experimental test results, research indicates that the joint simulation model of coupled hoisting system and hydraulic braking system can effectively reflect the dynamic characteristics of the actual hoisting system. It provides an effective tool for hoist design, optimization, performance analysis, and operating condition simulation. In addition, the methods and techniques used in the co-simulation modeling procedure are portable. Therefore, the paper is of significance for the mine hoist.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability analysis of braking and control system of pipeline intelligent plugging robot;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-02-09

2. Longitudinal vibration estimation of a mine hoist using a hybrid signal fusion method combining UKF, ND and improved DE;Measurement Science and Technology;2024-01-18

3. Adaptive fuzzy command–filtered control strategy for electro-hydraulic braking systems of winding hoist with prescribed performance;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-10-06

4. Nonlinear Dynamic Behavior of Longitudinal-Torsional-Lateral Round Balance Rope Combined With Hoisting Rope in Friction Hoisting System;Journal of Vibration Engineering & Technologies;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3