Carcinogenesis induced by low-dose radiation

Author:

Piotrowski Igor1,Kulcenty Katarzyna12,Suchorska Wiktoria Maria12,Skrobała Agnieszka23,Skórska Małgorzata3,Kruszyna-Mochalska Marta23,Kowalik Anna3,Jackowiak Weronika4,Malicki Julian23

Affiliation:

1. Radiobiology Laboratory , Department of Medical Physics, Greater Poland Cancer Centre , Garbary 15 Street , Poznań , Poland

2. Department of Electroradiology , University of Medical Sciences , Poznań , Poland

3. Department of Medical Physics , Greater Poland Cancer Centre , Poznań , Poland

4. Radiotherapy Ward I , Greater Poland Cancer Centre , Poznań , Poland

Abstract

Abstract Background Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure. Conclusions Understanding the molecular mechanisms of response to low dose radiation is crucial for the proper evaluation of risks and benefits that stem from these exposures and should be considered in the radiotherapy treatment planning and in determining the allowed occupational exposures.

Publisher

Walter de Gruyter GmbH

Subject

Radiology Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3