In Situ Visualization for Control of Nano-Fibrillation Based on Spunbond Processing Using a Polypropylene/Polyethylene Terephthalate System

Author:

Md. Shahin A. N.1,Shaayegan V.1,Lee P. C.12,Park C. B.1

Affiliation:

1. Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto , Toronto , Canada

2. Multifunctional Composites Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto , Toronto , Canada

Abstract

Abstract In situ generation of polyethylene terephthalate (PET) nanofibrils in polypropylene (PP) microfibers via fiber spinning in a spunbond process was studied in this work. The effects of polymer flow rate and air speed in the drafter on the formation of PET fibrils were investigated using a pilot scale machine. An in-situ visualization technique was applied to examine the fiber evolution events and stretch profile at die exit. A scanning electron microscope was used to analyze and investigate the morphology of the dispersed domain. The PET dispersed phase was fibrillated within the PP matrix such that a nonofibrillated composite containing fibrils with an average size around 100 nm was obtained. It was found that the final fibril size directly depends on the degree of die swell, the air speed and the polymer flow rate. It was also found that the in situ observed size of the micro-scale PP/PET fibers was well correlated to the size of the nano-scale PET fibers formed in the PP matrix. The visualization results revealed that a smaller fibril diameter was obtainable by increasing the stretching on the spin line and/or decreasing the die swell.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3