Dual role of nanoclay in the improvement of the in-situ nanofibrillar morphology in polypropylene/polybutylene terephthalate nanocomposites

Author:

Seraji Amir Abbas1,Bajgholi Amir Ali2

Affiliation:

1. Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran

2. Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

The present study has addressed the effects of nanoclay on the properties of polypropylene (PP)/polybutylene terephthalate (PBT) blend fibers such as their dyeability and, rheological and resiliency behaviors which are produced by melt spinning. The results of the differential scanning calorimetry (DSC) analysis indicated that the presence of both nanoclay and PBT significantly influenced the crystallinity of PP which also confirmed their nucleating effects on the nanocomposite fibers. Compared to neat PP fibers, the incorporation of 0.5–1wt.% of nanoclay and 10 wt.% of PBT nanocomposite fibers caused approximately 23% and 52% enhancements in the resiliency and dye uptake respectively without using toxic carriers. The rheological analysis was carried out for investigating the viscoelastic behavior, and microstructural and dispersion of nanoclay in the nanocomposite fibers. The rheological behavior in the small amplitude oscillatory shear (SAOS) test demonstrated the percolation threshold network of the structure of PBT fibrils in the PP matrix. When the PBT domains are fibrillated, the storage modulus (G′) and complex viscosity increase compared to neat PP. Also, the nonterminal behavior at low frequencies indicates the uniform dispersion of nanoclay in fiber nanocomposites. These all cause the improvement of the melt strength of the PP matrix. Transmission electron microscopy (TEM) was used to study the dispersion and localization of nanoclay. Nanoclay has also played a compatibilizing role in the immisible PP/PBT blend and was localized mainly in the PBT disperse and interface, and therefore prevented coalescence. The role of the compatibility of nanoparticles is to decrease the mean diameter of the nano-fibrils to 75 nm, for the hot-drawn nanocomposite fibers, as measured by scanning electron microscopy (SEM). All of the above lead to increasing the melt strength and elasticity of the nanocomposites in the fiber spinning process.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3