Deep convolutional neural network for chronic kidney disease prediction using ultrasound imaging

Author:

Patil Smitha12,Choudhary Savita3

Affiliation:

1. Research Scholar, VTU , RC Sir MVIT , Bengaluru , India

2. Assistant Professor, Presidency University , Bengaluru , India

3. Sir M Visvesvaraya Institute of Technology , Bangalore , India

Abstract

Abstract Objectives Chronic kidney disease (CKD) is a common disease and it is related to a higher risk of cardiovascular disease and end-stage renal disease that can be prevented by the earlier recognition and diagnosis of individuals at risk. Even though risk factors for CKD have been recognized, the effectiveness of CKD risk classification via prediction models remains uncertain. This paper intends to introduce a new predictive model for CKD using US image. Methods The proposed model includes three main phases “(1) preprocessing, (2) feature extraction, (3) and classification.” In the first phase, the input image is subjected to preprocessing, which deploys image inpainting and median filtering processes. After preprocessing, feature extraction takes place under four cases; (a) texture analysis to detect the characteristics of texture, (b) proposed high-level feature enabled local binary pattern (LBP) extraction, (c) area based feature extraction, and (d) mean intensity based feature extraction. These extracted features are then subjected for classification, where “optimized deep convolutional neural network (DCNN)” is used. In order to make the prediction more accurate, the weight and the activation function of DCNN are optimally chosen by a new hybrid model termed as diversity maintained hybrid whale moth flame optimization (DM-HWM) model. Results The accuracy of adopted model at 40th training percentage was 44.72, 11.02, 5.59, 3.92, 3.92, 3.57, 2.59, 1.71, 1.68, and 0.42% superior to traditional artificial neural networks (ANN), support vector machine (SVM), NB, J48, NB-tree, LR, composite hypercube on iterated random projection (CHIRP), CNN, moth flame optimization (MFO), and whale optimization algorithm (WOA) models. Conclusions Finally, the superiority of the adopted scheme is validated over other conventional models in terms of various measures.

Publisher

Walter de Gruyter GmbH

Subject

Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous),General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3