Author:
Wang Zijian, ,Zhu Yaqin,Shi Haibo,Zhang Yanting,Yan Cairong,
Abstract
<abstract>
<p>Computer Assisted Diagnosis (CAD) based on brain Magnetic Resonance Imaging (MRI) is a popular research field for the computer science and medical engineering. Traditional machine learning and deep learning methods were employed in the classification of brain MRI images in the previous studies. However, the current algorithms rarely take into consideration the influence of multi-scale brain connectivity disorders on some mental diseases. To improve this defect, a deep learning structure was proposed based on MRI images, which was designed to consider the brain's connections at different sizes and the attention of connections. In this work, a Multiscale View (MV) module was proposed, which was designed to detect multi-scale brain network disorders. On the basis of the MV module, the path attention module was also proposed to simulate the attention selection of the parallel paths in the MV module. Based on the two modules, we proposed a 3D Multiscale View Convolutional Neural Network with Attention (3D MVA-CNN) for classification of MRI images for mental disease. The proposed method outperformed the previous 3D CNN structures in the structural MRI data of ADHD-200 and the functional MRI data of schizophrenia. Finally, we also proposed a preliminary framework for clinical application using 3D CNN, and discussed its limitations on data accessing and reliability. This work promoted the assisted diagnosis of mental diseases based on deep learning and provided a novel 3D CNN method based on MRI data.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference41 articles.
1. S. G. Shamay-Tsoory, J. Aharon-Peretz, Dissociable prefrontal networks for cognitive and affective theory of mind: a lesion study, Neuropsychologia, 45 (2007), 3054-3067.
2. M. Hu, K. Sim, J. H. Zhou, X. Jiang, C. Guan, Brain MRI-based 3D Convolutional Neural Networks for Classification of Schizophrenia and Controls, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, (2020), 1742-1745
3. E. Li, The application of BOLD-fMRI in cognitive neuroscience, J. Frontiers Comput. Sci. Technol., 2 (2008), 589-600.
4. K. J. Friston, L. Harrison, W. Penny, Dynamic causal modelling, Neuroimage, 19 (2003), 1273-1302.
5. F. Pereira, T. Mitchell, M. Botvinick, Machine learning classifiers and fMRI: a tutorial overview, Neuroimage, 45 (2009), S199-S209.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献