Abstract
Abstract
Least-squares collocation (LSC) is a crucial mathematical tool for solving many geodetic problems. It has the capability to adjust, filter, and predict unknown quantities that affect many geodetic applications. Hence, this study aims to enhance the predictability property of LSC through applying soft computing techniques in the stage of describing the covariance function. Soft computing techniques include the support vector machine (SVM), least-squares-support vector machine (LS-SVM), and artificial neural network (ANN). A real geodetic case study is used to predict a national geoid from the EGM2008 global geoid model in Egypt. A comparison study between parametric and soft computing techniques was performed to assess the LSC predictability accuracy. We found that the predictability accuracy increased when using soft computing techniques in the range of 10.2 %–27.7 % and 8.2 %–29.8 % based on the mean square error and the mean error terms, respectively, compared with the parametric models. The LS-SVM achieved the highest accuracy among the soft computing techniques. In addition, we found that the integration between the LS-SVM with LSC exhibits an accuracy of 20 % and 25 % higher than using LS-SVM independently as a predicting tool, based on the mean square error and mean error terms, respectively. Consequently, the LS-SVM integrated with LSC is recommended for enhanced predictability in geodetic applications.
Subject
Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modelling and Simulation
Reference152 articles.
1. Evaluation and Adaptation of the EGM2008 Geopotential Model along the Northern Nile Valley, Egypt: Case Study;Journal of Surveying Engineering,2010
2. Least squares support vector machine classifiers;Neural Processing Letters,1999
3. The use of Least-Squares Collocation for the processing of GOCE data;Vermessung & Geoinformation,2010
4. Coordinate transformation between two geodetic datums of Taiwan by least-squares collocation;Journal of Surveying Engineering,2006
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献