Computer-aided diagnosis system for retinal disorder classification using optical coherence tomography images

Author:

Saleh Neven1ORCID,Abdel Wahed Manal2,Salaheldin Ahmed M.1ORCID

Affiliation:

1. Systems and Biomedical Engineering Department , Higher Institute of Engineering in El-Shorouk city, Shorouk Academy , Cairo , Egypt

2. Systems and Biomedical Engineering Department , Faculty of Engineering, Cairo University , Giza , Egypt

Abstract

Abstract The incidence of vision impairment is rapidly increasing. Diagnosis and classifying retinal abnormalities in ophthalmological applications is a significant challenge. Using Optical Coherence Tomography (OCT), the study aims to develop a computer aided diagnosis system for detecting and classifying retinal disorders. Choroidal neovascularization, diabetic macular edema, drusen, and normal cases are the investigated groups. Both deep learning and machine learning are combined to build the system. The SqueezeNet neural network was modified to extract features. The Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), Decision Tree (DT), and Ensemble Model (EM) algorithms were used for disorder classification. The Bayesian optimization technique was also used to determine the best hyperparameters for each model. The model’ performance was evaluated through nine criteria using 12,000 OCT images. The results have demonstrated accuracies of 97.39, 97.47, 96.98, and 95.25% for the SVM, K-NN, DT, and EM, respectively. When results are compared to relevant studies in terms of accuracy and tested samples, they show superior performance. As a result, a novel computer-aided diagnosis system for detecting and classifying retinal diseases has been developed, reducing human error while also saving time.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3