Affiliation:
1. Systems and Biomedical Engineering Department , Higher Institute of Engineering in El-Shorouk city, Shorouk Academy , Cairo , Egypt
2. Systems and Biomedical Engineering Department , Faculty of Engineering, Cairo University , Giza , Egypt
Abstract
Abstract
The incidence of vision impairment is rapidly increasing. Diagnosis and classifying retinal abnormalities in ophthalmological applications is a significant challenge. Using Optical Coherence Tomography (OCT), the study aims to develop a computer aided diagnosis system for detecting and classifying retinal disorders. Choroidal neovascularization, diabetic macular edema, drusen, and normal cases are the investigated groups. Both deep learning and machine learning are combined to build the system. The SqueezeNet neural network was modified to extract features. The Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), Decision Tree (DT), and Ensemble Model (EM) algorithms were used for disorder classification. The Bayesian optimization technique was also used to determine the best hyperparameters for each model. The model’ performance was evaluated through nine criteria using 12,000 OCT images. The results have demonstrated accuracies of 97.39, 97.47, 96.98, and 95.25% for the SVM, K-NN, DT, and EM, respectively. When results are compared to relevant studies in terms of accuracy and tested samples, they show superior performance. As a result, a novel computer-aided diagnosis system for detecting and classifying retinal diseases has been developed, reducing human error while also saving time.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献