Deep Learning‐Based Automated Detection and Grading of Papilledema From OCT Images: A Promising Approach for Improved Clinical Diagnosis and Management

Author:

Salaheldin Ahmed M.12,Abdel Wahed Manal1,Talaat Manar3,Saleh Neven24

Affiliation:

1. Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University Giza Egypt

2. Systems and Biomedical Engineering Department Higher Institute of Engineering, EL Shorouk Academy Cairo Egypt

3. Department of Ophthalmology, Faculty of Medicine South Valley University Qena Egypt

4. Electrical Communication and Electronic Systems Engineering Department, Engineering Faculty October University for Modern Sciences and Arts Giza Egypt

Abstract

ABSTRACTPapilledema is a prevalent neuro‐ophthalmic condition characterized by optic disk swelling. It is known to pose a significant risk of vision loss in its advanced stages. To address the pressing need for accurate detection and grading of papilledema, this study introduces a novel approach utilizing optical coherence tomography (OCT) scans. A cascaded model that combines four transfer learning models—SqueezeNet, AlexNet, GoogleNet, and ResNet‐50—for both the detection and grading phases was proposed. Additionally, a specialized convolutional neural network (CNN) model is meticulously designed to cater specifically to the complexities of papilledema analysis. Unlike the fundus camera‐based models, this study integrates deep learning models for the diagnosis of papilledema from OCT scans. A new dataset of OCT scans was collected to ensure a comprehensive evaluation of the models. It encompasses a wide range of papilledema, pseudopapilledema, and normal cases. This dataset serves as a valuable resource for training and testing of the proposed models. In addition, two validation strategies have been adopted to ensure the model's generalizability and robustness. Furthermore, it enhances the model's accuracy and reliability. The results are highly promising; remarkable accuracy rates have been achieved. Specifically, the SqueezeNet, AlexNet, GoogleNet, ResNet‐50, and customized CNN models achieved accuracy levels of 98.44%, 98.50%, 98.28%, 98.30%, and 96.26%, respectively, for the handout validation strategy. These findings not only demonstrate the efficacy of using deep learning in papilledema detection and grading but also establish the superiority of the proposed models when compared with other relevant studies. By addressing the challenges associated with papilledema, the study significantly contributes to the advancement of neuro‐ophthalmic diagnostics. The accurate and efficient detection of papilledema from OCT scans holds immense potential for guiding timely interventions and preserving patients' visual health.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3