Affiliation:
1. Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University Giza Egypt
2. Systems and Biomedical Engineering Department Higher Institute of Engineering, EL Shorouk Academy Cairo Egypt
3. Department of Ophthalmology, Faculty of Medicine South Valley University Qena Egypt
4. Electrical Communication and Electronic Systems Engineering Department, Engineering Faculty October University for Modern Sciences and Arts Giza Egypt
Abstract
ABSTRACTPapilledema is a prevalent neuro‐ophthalmic condition characterized by optic disk swelling. It is known to pose a significant risk of vision loss in its advanced stages. To address the pressing need for accurate detection and grading of papilledema, this study introduces a novel approach utilizing optical coherence tomography (OCT) scans. A cascaded model that combines four transfer learning models—SqueezeNet, AlexNet, GoogleNet, and ResNet‐50—for both the detection and grading phases was proposed. Additionally, a specialized convolutional neural network (CNN) model is meticulously designed to cater specifically to the complexities of papilledema analysis. Unlike the fundus camera‐based models, this study integrates deep learning models for the diagnosis of papilledema from OCT scans. A new dataset of OCT scans was collected to ensure a comprehensive evaluation of the models. It encompasses a wide range of papilledema, pseudopapilledema, and normal cases. This dataset serves as a valuable resource for training and testing of the proposed models. In addition, two validation strategies have been adopted to ensure the model's generalizability and robustness. Furthermore, it enhances the model's accuracy and reliability. The results are highly promising; remarkable accuracy rates have been achieved. Specifically, the SqueezeNet, AlexNet, GoogleNet, ResNet‐50, and customized CNN models achieved accuracy levels of 98.44%, 98.50%, 98.28%, 98.30%, and 96.26%, respectively, for the handout validation strategy. These findings not only demonstrate the efficacy of using deep learning in papilledema detection and grading but also establish the superiority of the proposed models when compared with other relevant studies. By addressing the challenges associated with papilledema, the study significantly contributes to the advancement of neuro‐ophthalmic diagnostics. The accurate and efficient detection of papilledema from OCT scans holds immense potential for guiding timely interventions and preserving patients' visual health.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献