Designing and in vitro testing of a novel patient-specific total knee prosthesis using the probabilistic approach

Author:

Korkmaz İsmail H.1ORCID,Kaymaz İrfan1,Yıldırım Ömer S.2,Murat Fahri1,Kovacı Halim3

Affiliation:

1. Department of Mechanical Engineering , Faculty of Engineering and Architecture, Erzurum Technical University , Erzurum , Turkey

2. Department of Orthopedics and Traumatology , Atatürk University , Erzurum , Turkey

3. Department of Mechanical Engineering , Atatürk University , Erzurum , Turkey

Abstract

Abstract In order to prevent failure as well as ensure comfort, patient-specific modelling for prostheses has been gaining interest. However, deterministic analyses have been widely used in the design process without considering any variation/uncertainties related to the design parameters of such prostheses. Therefore, this study aims to compare the performance of patient-specific anatomic Total Knee Arthroplasty (TKA) with off-the-shelf TKA. In the patient-specific model, the femoral condyle curves were considered in the femoral component’s inner and outer surface design. The tibial component was designed to completely cover the tibia cutting surface. In vitro experiments were conducted to compare these two models in terms of loosening of the components. A probabilistic approach based on the finite element method was also used to compute the probability of failure of both models. According to the deterministic analysis results, 103.10 and 21.67 MPa von Mises stress values were obtained for the femoral component and cement in the anatomical model, while these values were 175.86 and 25.76 MPa, respectively, for the conventional model. In order to predict loosening damage due to local osteolysis or stress shield, it was determined that the deformation values in the examined cement structures were 15% lower in the anatomical model. According to probabilistic analysis results, it was observed that the probability of encountering an extreme value for the anatomical model is far less than that of the conventional model. This indicates that the anatomical model is safer than the conventional model, considering the failure scenarios in this study.

Funder

Scientific and Technological Research Council of Turkey

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3