Inductive 3D numerical modelling of the tibia bone using MRI to examine von Mises stress and overall deformation

Author:

Kokz Samer A.12,Mohsen Ali M.1,Nile Khaldoon Khalil34,Khaleel Zainab B.34

Affiliation:

1. College of Engineering, University of Warith Al-Anbiyaa , Karbala , 56001 , Iraq

2. Prosthetic and Orthotics Department, College of Engineering, University of Kerbala , Karbala , 56001 , Iraq

3. College of Medicine, University of Al-Ameed , Karbala , 56001 , Iraq

4. College of Medicine, University of Kerbala , Karbala , 56001 , Iraq

Abstract

Abstract As the main load bearer throughout the gait cycle, the tibia is a crucial bone in the lower leg that distributes ground reaction forces with each stride. Comprehending the distribution of stress inside the tibia is essential for both avoiding fractures and developing efficient methods of redistributing load to promote healing and biomechanical correction. The study examined the stress, strain, and deformation encountered by the tibia over a 7-s walking cycle using an ANSYS workbench software, using tibia bone under a period of force applied to the boundary condition at intervals of 0.2 s. The tibia encounters stress levels varying from 0 to 1,400 N, exhibiting a regular pattern that aligns with the loading attributes often associated with traditional walking. The research conducted in this study identified the occurrence of maximum stress levels, measuring 25.45 MPa. Additionally, related peak elastic strains and deformations were observed, measuring 2.19 × 10−3 and 2.43 mm, respectively. The patterns that have been seen indicate that there is an initial contact of the foot with the ground, followed by the bearing of weight and subsequently the toe-off. These observed patterns closely resemble the natural motion of the foot during the act of walking. Temporal fluctuations in elastic strain through the tibia throughout a gait cycle reveal that the strain is mostly cantered at the medial surface of the tibia. Additional investigation into the elastic properties and overall deformations of the tibia yielded valuable observations on prospective areas of interest within the bone’s structure. These findings are of utmost importance for biomechanical assessments and the identification of potential injury hazards in subsequent research endeavours.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3