Genetic algorithm optimization for dynamic construction site layout planning

Author:

Farmakis Panagiotis M.1,Chassiakos Athanasios P.2

Affiliation:

1. School of Science and Technology, Hellenic Open University, Patras 26335, Greece

2. Department of Civil Engineering, University of Patras, Patras 26500, Greece

Abstract

Abstract The dynamic construction site layout planning (DCSLP) problem refers to the efficient placement and relocation of temporary construction facilities within a dynamically changing construction site environment considering the characteristics of facilities and work interrelationships, the shape and topography of the construction site, and the time-varying project needs. A multi-objective dynamic optimization model is developed for this problem that considers construction and relocation costs of facilities, transportation costs of resources moving from one facility to another or to workplaces, as well as safety and environmental considerations resulting from facilities’ operations and interconnections. The latter considerations are taken into account in the form of preferences or constraints regarding the proximity or remoteness of particular facilities to other facilities or work areas. The analysis of multiple project phases and the dynamic facility relocation from phase to phase highly increases the problem size, which, even in its static form, falls within the NP (for Nondeterministic Polynomial time)- hard class of combinatorial optimization problems. For this reason, a genetic algorithm has been implemented for the solution due to its capability to robustly search within a large solution space. Several case studies and operational scenarios have been implemented through the Palisade’s Evolver software for model testing and evaluation. The results indi­cate satisfactory model response to time-varying input data in terms of solution quality and computation time. The model can provide decision support to site managers, allowing them to examine alternative scenarios and fine-tune optimal solutions according to their experience by introducing desirable preferences or constraints in the decision process.

Publisher

Walter de Gruyter GmbH

Subject

Management of Technology and Innovation,Organizational Behavior and Human Resource Management,Strategy and Management,Building and Construction,Civil and Structural Engineering

Reference31 articles.

1. Andayesh, M., & Sadeghpour, F. (2013). Dynamic site layout planning through minimization of total potential energy. Automation in Construction, 31, 92-102.

2. Calis, G., & Yuksel, O. (2010). A comparative study for layout planning of temporary construction facilities: Optimization by using ant colony algorithms. In: Proceedings of the 13th International Conference on Computing in Civil and Building Engineering, Nottingham, UK, p. 267.

3. Chandratre, K. V., & Nandurkar, K. N. (2011). Applying genetic algorithm to dynamic layout problem. International Journal of Applied, 1(3), pp. 1-9.

4. Chau, K. W. (2004). A two-stage dynamic model on allocation of construction facilities with genetic algorithm. Automation in Construction, 13(4), pp. 481-490.

5. Cheung, S. O., Tong, T. K. L., & Tam, C. M. (2002). Site pre-cast yard layout arrangement through genetic algorithms. Automation in Construction, 11(1), pp. 35-46.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3