Compartmental Model Diagrams as Causal Representations in Relation to DAGs

Author:

Ackley Sarah F.,Mayeda Elizabeth Rose,Worden Lee,Enanoria Wayne T. A.,Glymour M. Maria,Porco Travis C.

Abstract

AbstractCompartmental model diagrams have been used for nearly a century to depict causal relationships in infectious disease epidemiology. Causal directed acyclic graphs (DAGs) have been used more broadly in epidemiology since the 1990s to guide analyses of a variety of public health problems. Using an example from chronic disease epidemiology, the effect of type 2 diabetes on dementia incidence, we illustrate how compartmental model diagrams can represent the same concepts as causal DAGs, including causation, mediation, confounding, and collider bias. We show how to use compartmental model diagrams to explicitly depict interaction and feedback cycles. While DAGs imply a set of conditional independencies, they do not define conditional distributions parametrically. Compartmental model diagrams parametrically (or semiparametrically) describe state changes based on known biological processes or mechanisms. Compartmental model diagrams are part of a long-term tradition of causal thinking in epidemiology and can parametrically express the same concepts as DAGs, as well as explicitly depict feedback cycles and interactions. As causal inference efforts in epidemiology increasingly draw on simulations and quantitative sensitivity analyses, compartmental model diagrams may be of use to a wider audience. Recognizing simple links between these two common approaches to representing causal processes may facilitate communication between researchers from different traditions.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Epidemiology

Reference116 articles.

1. Graphical models for composable finite Markov processes;Scandinavian Journal of Statistics,2007

2. Use of approximate Bayesian computation to assess and fit models of Mycobacterium leprae to predict outcomes of the brazilian control program;Plos One,2015

3. Stochastic counterfactuals and stochastic sufficient causes;Statistica Sinica,2012

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3