Characterization and first results of the planetary borehole-wall imager — methods to develop for in-situ exploration

Author:

Kereszturi Ákos1,Duvet Ludovic2,Gróf Gyula3,Gyenis Ákos4,Gyenis Tamás3,Kapui Zsuzsanna1,Kovács Bálint2,Maros Gyula5

Affiliation:

1. Research Centre for Astronomy and Earth Sciences , Hungary Budapest

2. European Space Agency, ESTEC , The Netherlands Paris

3. Budapest University of Technology and Economics , Hungary Budapest

4. Kolorprint LP. Hungary Budapest

5. Mining and Geological Survey of Hungary Budapest

Abstract

Abstract Prototypes of borehole-wall imager instruments were developed and tested at a desert riverbed in Morocco and at a lake’s salty flat in the Atacama desert, to support the drilling activity of ExoMars rover. The onsite recorded borehole images contain information on the context that are lost during the sample acquisition. Benefits of the borehole-wall imaging is the easier maximal energy estimation of a fluvial flow, the detailed information on sedimentation and layering, especially the former existence of liquid water and its temporal changes, including paleo-flow direction estimation from grain imbrication direction. Benefits of laboratory analysis of the acquired samples are the better identification of mineral types, determination of the level of maturity of granular sediment, and identification of the smallest, wet weathered grains. Based on the lessons learned during the comparison of field and laboratory results, we demonstrate that recording the borehole-wall with optical instrument during/after drilling on Mars supports the paleo-environment reconstruction with such data that would otherwise be lost during the sample acquisition. Because of the lack of plate tectonism and the low geothermal gradient on Mars, even Ga old sediments provide observable features that are especially important for targeting Mars sample return and later crewed Mars missions.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3