Affiliation:
1. Department of Chemistry and Pharmacy, Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Str. 2 , D-48149 Münster , Germany
Abstract
Abstract
Head-to-tail cyclization of genetically encoded peptides and proteins can be achieved with the split intein circular ligation of peptides and proteins (SICLOPPS) method by inserting the desired polypeptide between the C- and N-terminal fragments of a split intein. To prevent the intramolecular protein splicing reaction from spontaneously occurring upon folding of the intein domain, we have previously rendered this process light-dependent in a photo-controllable variant of the M86 intein, using genetically encoded ortho-nitrobenzyltyrosine at a structurally important position. Here, we report improvements on this photo-intein with regard to expression yields and rate of cyclic peptide formation. The temporally defined photo-activation of the purified stable intein precursor enabled a kinetic analysis that identified the final resolution of the branched intermediate as the rate-determining individual reaction of the three steps catalyzed by the intein. With this knowledge, we prepared an R143H mutant with a block F histidine residue. This histidine is conserved in most inteins and helps catalyze the third step of succinimide formation. The engineered intein formed the cyclic peptide product up to 3-fold faster within the first 15 min after irradiation, underlining the potential of protein splicing pathway engineering. The broader utility of the intein was also shown by formation of the 14-mer sunflower trypsin inhibitor 1.
Funder
Deutsche Forschungsgemeinschaft
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献