Learning to diagnose X-rays: a neuroscientific study of practice-related activation changes in the prefrontal cortex

Author:

Rotgans Jerome I.1ORCID

Affiliation:

1. Nanyang Technological University, Lee Kong Chian School of Medicine , Singapore , Singapore

Abstract

Abstract Objectives Medical expertise manifests itself by the ability of a physician to rapidly diagnose patients. How this expertise develops from a neural-activation perspective is not well understood. The objective of the present study was to investigate practice-related activation changes in the prefrontal cortex (PFC) as medical students learn to diagnose chest X-rays. Methods The experimental paradigm consisted of a learning and a test phase. During the learning phase, 26 medical students were trained to diagnose four out of eight chest X-rays. These four cases were presented repeatedly and corrective feedback was provided. During the test phase, all eight cases were presented together with near- and far-transfer cases to examine whether participants’ diagnostic learning went beyond simple rote recognition of the trained X-rays. During both phases, participants’ PFC was scanned using functional near-infrared spectroscopy. Response time and diagnostic accuracy were recorded as behavioural indicators. One-way repeated measures ANOVA were conducted to analyse the data. Results Results revealed that participants’ diagnostic accuracy significantly increased during the learning phase (F=6.72, p<0.01), whereas their response time significantly decreased (F=16.69, p<0.001). Learning to diagnose chest X-rays was associated with a significant decrease in PFC activity (F=33.21, p<0.001) in the left dorsolateral prefrontal cortex, the orbitofrontal area, the frontopolar area and the frontal eye field. Further, the results of the test phase indicated that participants’ diagnostic accuracy was significantly higher for the four trained cases, second highest for the near-transfer, third highest for the far-transfer cases and lowest for the untrained cases (F=167.20, p<0.001) and response time was lowest for the trained cases, second lowest for the near-transfer, third lowest for the far-transfer cases and highest for the untrained cases (F=9.72, p<0.001). In addition, PFC activity was lowest for the trained and near-transfer cases, followed by the far-transfer cases and highest for the untrained cases (F=282.38, p<0.001). Conclusions The results suggest that learning to diagnose X-rays is associated with a significant decrease in PFC activity. In terms of dual-process theory, these findings support the notion that students initially rely more on slow analytical system-2 reasoning. As expertise develops, system-2 reasoning transitions into faster and automatic system-1 reasoning.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,Public Health, Environmental and Occupational Health,Health Policy,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3