Examining Autocompletion as a Basic Concept for Interaction with Generative AI

Author:

Lehmann Florian1,Buschek Daniel1

Affiliation:

1. Research Group HCI + AI, Department of Computer Science , 26523 University of Bayreuth , Bayreuth , Germany

Abstract

Abstract Autocompletion is an approach that extends and continues partial user input. We propose to interpret autocompletion as a basic interaction concept in human-AI interaction. We first describe the concept of autocompletion and dissect its user interface and interaction elements, using the well-established textual autocompletion in search engines as an example. We then highlight how these elements reoccur in other application domains, such as code completion, GUI sketching, and layouting. This comparison and transfer highlights an inherent role of such intelligent systems to extend and complete user input, in particular useful for designing interactions with and for generative AI. We reflect on and discuss our conceptual analysis of autocompletion to provide inspiration and a conceptual lens on current challenges in designing for human-AI interaction.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication,Business, Management and Accounting (miscellaneous),Information Systems,Social Psychology

Reference50 articles.

1. Alberto Alvarez, Steve Dahlskog, Jose Font, Johan Holmberg, Chelsi Nolasco, and Axel Österman. Fostering creativity in the mixed-initiative evolutionary dungeon designer. In Proceedings of the 13th International Conference on the Foundations of Digital Games, pages 1–8, Malmö Sweden, August 2018. ACM. ISBN 978-1-4503-6571-0. 10.1145/3235765.3235815. URL https://dl.acm.org/doi/10.1145/3235765.3235815.

2. Alia Amin, Michiel Hildebrand, Jacco van Ossenbruggen, Vanessa Evers, and Lynda Hardman. Organizing Suggestions in Autocompletion Interfaces. In Mohand Boughanem, Catherine Berrut, Josiane Mothe, and Chantal Soule-Dupuy, editors, Advances in Information Retrieval, volume 5478, pages 521–529. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00957-0 978-3-642-00958-7. 10.1007/978-3-642-00958-7_46. URL http://link.springer.com/10.1007/978-3-642-00958-7_46. Series Title: Lecture Notes in Computer Science.

3. Nikola Banovic, Ticha Sethapakdi, Yasasvi Hari, Anind K. Dey, and Jennifer Mankoff. The Limits of Expert Text Entry Speed on Mobile Keyboards with Autocorrect. In Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services, pages 1–12, Taipei Taiwan, October 2019. ACM. ISBN 978-1-4503-6825-4. 10.1145/3338286.3340126. URL https://dl.acm.org/doi/10.1145/3338286.3340126.

4. Ziv Bar-Yossef and Naama Kraus. Context-sensitive query auto-completion. In Proceedings of the 20th international conference on World wide web, WWW ’11, pages 107–116, New York, NY, USA, March 2011. ACM Press. ISBN 978-1-4503-0632-4. 10.1145/1963405.1963424. URL https://doi.org/10.1145/1963405.1963424.

5. Holger Bast and Ingmar Weber. Type less, find more: fast autocompletion search with a succinct index. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’06, pages 364–371, New York, NY, USA, August 2006. ACM Press. ISBN 978-1-59593-369-0. 10.1145/1148170.1148234. URL https://doi.org/10.1145/1148170.1148234.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of large language models on higher education: exploring the connection between AI and Education 4.0;Frontiers in Education;2024-06-14

2. An Introduction to Generative AI Tools for Education 2030;Advances in Educational Technologies and Instructional Design;2024-06-03

3. Predictive typing method for Persian office automation;Engineering Applications of Artificial Intelligence;2024-05

4. Intelligent Reporting System: Engineered with Application Development;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

5. Generative artificial intelligence;Electronic Markets;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3