Geogrid reinforcement for improving bearing capacity and stability of square foundations

Author:

Hussain Mortada Salim1,Shaban Alaa M.1,Hussein Hussein H.2

Affiliation:

1. Civil Engineering Department, Engineering College University of Kerbala , Karbala , Iraq

2. Civil Engineering Department, Engineering College University of Warith Al-Anbiyaa , Karbala , Iraq

Abstract

Abstract Shallow foundations are often the most economical option for building support, as they distribute structural weight to soil layers, require minimal earthwork, and do not necessitate specialized machinery. The most common type of soil in the city of Karbala is sandy soil. It is granular and loose by nature which has a relatively low bearing capacity. According to previous studies, the soil weakness is one of the problems with shallow foundation construction. Thus, the aim of this study is to improve the properties of the soil using geogrid reinforcement. Three critical parameters are examined, including depth, size, and number of geogrid layers in the soil reinforcement process to increase bearing capacity and decrease soil settling. The effect of geogrid depth (u) was studied by considering four depth ratios (u/B = 0.5, 1.0, 1.5, and 2.0) in order to determine the ideal depth of the geogrid layer, where (B) refers to the width of the footings. The results indicated that a decrease in depth ratio significantly increased the bearing capacity of footings built on reinforced soil layers compared to those built on natural soil, and the settlement reduction ratio (SRR) also increased. The size of the geogrid layer (i.e., width of the geogrid layer (b) was evaluated by evaluating four size ratios (b/B = 1.5, 3.0, 4.5, and 6.0). With an increasing size ratio of the geogrid layer, the bearing capacity ratio (BRC) was significantly improved. Additionally, the study examined the optimal number of geogrid layers, focusing on single and multiple layers with N = 1, 2, 3, and 4. The results showed a higher BRC for footings on reinforced soil layers, as well as a significant rise in SRR with an increase in the number of geogrid layers. Finally, it was concluded that the optimal depth ratio was u/B = 0.5, the size ratio was b/B = 4.5, and reinforced with three geogrid layers, which provided the highest bearing capacity and SRR. The experimental test results were verified by comparing them with those calculated using theoretically developed models. The variation between the experimental and theoretical results is reasonable, confirming that the experimental testing results exhibit a high degree of accuracy.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3