Physicochemical and Microstructural Characterization of Klias Peat, Lumadan POFA, and GGBFS for Geopolymer Based Soil Stabilization

Author:

Amaludin Adriana E.ORCID,Asrah Hidayati,Mohamad Habib M.ORCID,Bin Amaludin Hassanel Z.ORCID,Bin Amaludin Nazrein A.ORCID

Abstract

Peat soils are highly heterogeneous and considered problematic because they have a high moisture content and low shear strength. It requires stabilization to enhance its engineering properties before it is transformed into a viable construction material. The use of geopolymers as stabilizer materials for weak soils has been on the rise recently due to their low carbon footprint compared to the use of conventional stabilizer materials like cement. Geopolymerization occurs as a result of the alkali activation of aluminosilicate materials. In this study, peat soil and the aluminosilicate materials Palm Oil Fuel Ash (POFA) and Ground Granulated Blast Furnace Slag (GGBFS) are characterized to assess their suitability as geopolymer precursor materials. A series of laboratory studies were carried out to determine the physicochemical properties of the materials, such as particle size distribution, moisture and organic content, specific gravity, pH, and electrical conductivity. Furthermore, the XRD, XRF, and FESEM tests were carried out to ascertain the mineral characteristics, elemental chemical composition, and morphological characteristics of these materials, respectively. The peat soil is classified as hemic peat with sufficient aluminosilicate content (Si/Al ratio of 2.11). The POFA is identified as Class F pozzolan with adequate Si+Al+Fe oxide content (67.9%), as stipulated by ASTM C618. The GGBFS material was found to be appropriate for geopolymer production, with a Si/Al ratio of 2.17, a hydration modulus of 2.38 (good hydration), and a basicity coefficient of 1.32 (alkaline material favorable for geopolymerization). Based on the geopolymer precursor material suitability assessment criteria, all the materials assessed were deemed suitable for geopolymerization, and the effectiveness of POFA-GGBFS geopolymer to improve peat soil properties should be studied in depth. At present, there are limited studies pertaining to the use of alkali-activated POFA-GGBFS blends to improve peat soil properties. As a result of this material characterization phase, planned works involving the compressive strength testing program on alkali-activated POFA-GGBFS-peat soil blends at ambient temperature will be carried out in the near future. The eventual aim of this research is to remediate the peat soil to be repurposed as road subgrade material. Doi: 10.28991/HIJ-2023-04-02-07 Full Text: PDF

Publisher

Ital Publication

Subject

Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3