Efficient novel penultimate joint detector for shrimps selection employing convolutional pose machine

Author:

Zhang Haodong1,Ren Tao1,Dong Puqing1,Dimirovski Georgi Marko2

Affiliation:

1. Software College of Northeastern University , Shenyang , Liaoning, China

2. Doctoral School FEIT, Electrical Engineering and Information Technologies , SS Cyril and Methodius University , 18 Rugjer Boskovic, MK-1000 Skopje , Republic of N. Macedonia

Abstract

Abstract Manual labor involved in shrimp extraction selection accounts for an extremely high proportion of processing time and also entails reduced accuracy and efficiency moreover even it could induce potential safety hazards. The key to substitute the manual process with automation lies in the identification and pinpointing of the penultimate joint in shrimps. Therefore, a cascaded neural network is proposed in this study to implement the detection of key points in a multi-shrimp scenario processing. More specifically, our model includes two stages: a shrimp detector based on YOLOv3 and followed by a pose estimator based on Convolutional Pose Machine (CPM). With the combination of attention mechanism and improved NMS strategy, our detector is equipped to resist noise interference in dense case, ubiquitous on the production line. Experimental results indicate that both the detection rate and the speed information extraction have achieved the standard of industry applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Reference30 articles.

1. Zehe, W, Zeming, Z, Xiuhua, Z, Wei, W. Experimental study of a method for mechanical shrimp heading. Modern Food Sci Technol 2015;31:151–6.

2. Jianzhang, L, Peng, C. Exploration and research of digital production line in traditional manufacturing enterprises. Intell Manuf 2018;275:52–5.

3. Simonyan, K, Zisserman, A. Very deep convolutional networks for large-scale image recognition. CoRR 2014;abs/1409.1566.

4. Szegedy, C, Liu, W, Jia, Y, Sermanet, P, Rabinovich, A. Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). Boston, MA, USA; 2015:1–9 pp.

5. Medus, LD, Saban, M, Francés-Víllora, J, Bataller-Mompeán, M, Rosado-Muoz, A. Hyperspectral image classification using CNN: application to industrial food packaging. Food Control 2021;125:107962. https://doi.org/10.1016/j.foodcont.2021.107962.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3