Total laboratory automation has the potential to be the field of application of artificial intelligence: the cyber-physical system and “Automation 4.0”
Author:
Affiliation:
1. Department of Physiology and Pharmacology , Sapienza University of Rome , Piazzale Aldo Moro 5 , 00185 Rome (RM) , Italy
2. Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Rome , Italy
Publisher
Walter de Gruyter GmbH
Subject
Biochemistry (medical),Clinical Biochemistry,General Medicine
Link
https://www.degruyter.com/document/doi/10.1515/cclm-2019-0226/pdf
Reference10 articles.
1. Lippi G, Da Rin G. Advantages and limitations of total laboratory automation: a personal overview. Clin Chem Lab Med 2019;57:802–11.
2. Hawker CD. Nonanalytic laboratory automation: a quarter century of progress. Clin Chem 2017;63:1074–82.
3. Hoffmann GE. Concepts for the third generation of laboratory systems. Clin Chim Acta 1998;278:203–16.
4. MarketsandMarkets. Artificial Intelligence in healthcare market worth $36.1 billion by 2025. 2018 [February 2019]. Available from: https://www.marketsandmarkets.com/PressReleases/artificial-intelligence-healthcare.asp.
5. MarketsandMarkets. Artificial Intelligence market by offering (hardware, software, services), technology (machine learning, natural language processing, context-aware computing, computer vision), end-user industry, and geography – global forecast to 2025 2018. [February 2019]. Available from: https://www.marketsandmarkets.com/Market-Reports/artificial-intelligence-market-74851580.html.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamic mirroring: unveiling the role of digital twins, artificial intelligence and synthetic data for personalized medicine in laboratory medicine;Clinical Chemistry and Laboratory Medicine (CCLM);2024-05-13
2. Biological matrices, reagents and turnaround-time: the full-circle of artificial intelligence in the pre-analytical Phase. Comment on Turcic A, et al., Machine learning to optimize cerebrospinal fluid dilution for analysis of MRZH reaction. CCLM 2024;62:436–41;Clinical Chemistry and Laboratory Medicine (CCLM);2024-03-20
3. Machine learning-based clinical decision support using laboratory data;Clinical Chemistry and Laboratory Medicine (CCLM);2023-11-29
4. Diagnostic quality model (DQM): an integrated framework for the assessment of diagnostic quality when using AI/ML;Clinical Chemistry and Laboratory Medicine (CCLM);2023-01-25
5. Clinlabomics: leveraging clinical laboratory data by data mining strategies;BMC Bioinformatics;2022-09-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3