Development of a new biochip array for APOE4 classification from plasma samples using immunoassay-based methods

Author:

Badrnya Sigrun1,Doherty Tara2,Richardson Ciaran2,McConnell Robert I.3,Lamont John V.3,Veitinger Michael1,FitzGerald Stephen P.3,Zellner Maria4,Umlauf Ellen1ORCID

Affiliation:

1. Centre of Physiology and Pharmacology , Institute of Physiology, Medical University of Vienna , Vienna , Austria

2. Randox Teoranta, Meenmore, Dungloe, Co. , Donegal , Ireland

3. Randox Laboratories Limited , County Antrim , UK

4. Centre of Physiology and Pharmacology , Institute of Vascular Biology, Medical University of Vienna , Vienna , Austria

Abstract

Abstract Background: Apolipoprotein E (APOE) is a key player in lipid transport and metabolism and exists in three common isoforms: APOE2, APOE3 and APOE4. The presence of the E4 allelic variant is recognized as a major genetic risk factor for dementia and other chronic (neuro)degenerative diseases. The availability of a validated assay for rapid and reliable APOE4 classification is therefore advantageous. Methods: Biochip array technology (BAT) was successfully applied to identify directly the APOE4 status from plasma within 3 h, through simultaneous immunoassay-based detection of both specific APOE4 and total APOE levels. Results: Samples (n=432) were first genotyped by polymerase chain reaction (PCR), and thereafter, using BAT, the corresponding plasma was identified as null, heterozygous or homozygous for the E4 allele by calculating the ratio of APOE4 to total APOE protein. Two centers based in Austria and Ireland correctly classified 170 and 262 samples, respectively, and achieved 100% sensitivity and specificity. Conclusions: This chemiluminescent biochip-based sandwich immunoarray provides a novel platform to detect rapidly and accurately an individual’s APOE4 status directly from plasma. The E4 genotype of individuals has been shown previously to affect presymptomatic risk, prognosis and treatment response for a variety of diseases, including Alzheimer’s disease. The biochip’s potential for being incorporated in quantitative protein biomarker arrays capable of analyzing disease stages makes it a superior alternative to PCR-based APOE genotyping and may deliver additional protein-specific information on a variety of diseases in the future.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry, medical,Clinical Biochemistry,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3