Enhancement of visual perception by combining transcranial electrical stimulation and visual perceptual training

Author:

He Qing1234ORCID,Yang Xin-Yue1234ORCID,Zhao Daiqing5ORCID,Fang Fang1234ORCID

Affiliation:

1. School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University , Beijing , China

2. Key Laboratory of Machine Perception, Ministry of Education, Peking University , Beijing , China

3. IDG/McGovern Institute for Brain Research, Peking University , Beijing , China

4. Peking-Tsinghua Center for Life Sciences, Peking University , Beijing , China

5. Department of Psychology , The Pennsylvania State University, University Park, State College , PA , USA

Abstract

Abstract The visual system remains highly malleable even after its maturity or impairment. Our visual function can be enhanced through many ways, such as transcranial electrical stimulation (tES) and visual perceptual learning (VPL). TES can change visual function rapidly, but its modulation effect is short-lived and unstable. By contrast, VPL can lead to a substantial and long-lasting improvement in visual function, but extensive training is typically required. Theoretically, visual function could be further improved in a shorter time frame by combining tES and VPL than by solely using tES or VPL. Vision enhancement by combining these two methods concurrently is both theoretically and practically significant. In this review, we firstly introduced the basic concept and possible mechanisms of VPL and tES; then we reviewed the current research progress of visual enhancement using the combination of two methods in both general and clinical population; finally, we discussed the limitations and future directions in this field. Our review provides a guide for future research and application of vision enhancement and restoration by combining VPL and tES.

Funder

National Science and Technology Innovation 2030 Major Program

National Natural Science Foundation of China

Beijing Academy of Artificial Intelligence

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3