The Constitutive Relationship and Processing Map of Hot Deformation in A100 steel

Author:

Liu Yongkang1,Yin Zongmei1,Luo Junting,Chunxiang Zhang2,Zhang Yanshu3

Affiliation:

1. 3Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, China

2. 4State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, China

3. 5Advanced Manufacture Technology Center, Beijing, China

Abstract

AbstractIsothermal compression tests were conducted on A100 steel using a Gleeble 1500 thermal simulator at a temperature range of 900–1,200°C and strain rate range of 0.001–3 s−1. Results show that the A100 steel has higher strength than the Aermet 100 steel at high temperatures. Constant values, such as A, α, and n, and activate energy Q were obtained through the regression processing of the stress–strain data curves under different strains. A set of constitutive equations for A100 steel was proposed by using an Arrhenius-type equation. The optimum processing craft ranges for A100 steel based on the analysis of the hot working diagram and deformation mechanism are as follows: temperature range of 1,000–1,100°C and strain rate range of 0.01–0.1 s−1. The average grain size within this working range is 7–22.5 μm.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3