Influence of Mechanical Alloying Time on Morphology and Properties of 15Cr-ODS Steel Powders

Author:

Xu Haijian1,Lu Zheng1,Jia Chunyan1,Feng Danzhu1,Liu Chunming1

Affiliation:

1. 1Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, P. R. China

Abstract

AbstractOxide dispersion strengthened (ODS) ferritic steels are the leading candidates of fuel cladding for Generation IV nuclear reactors due to their excellent properties such as excellent radiation tolerance and high-temperature creep strength. Mechanical milling with the aim of a fine dispersion of oxides in the metal matrix becomes the main process for the production of ODS steels. In order to clarify the influence of milling time on the precursor powders for 15Cr-ODS steel, the morphology and properties of mechanical alloying (MA) powders with different milling time were investigated by scanning electron microscopy (SEM), laser diffraction particle size analyzer, X-ray diffraction (XRD) and Vickers hardness tester. The experimental results showed that the powder was fractured and welded with rotation and vibration of container during mechanical milling. The mean powder size increased (0–1 h) firstly then decreased (2–60 h). Extending milling time to 70 h, the mean powder size increased again. The grain size decreased quickly at the initial stage of milling process (0–2 h) then trended to reach a saturation value. The Vickers hardness increased rapidly at the initial stage of milling, then reached a saturation value.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3